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ABSTRACT

The prediction of traits allows the breeder to guide
strategies to select and accelerate the progress of genetic
improvement. The objective of this work was to determine
the best prediction approach and establish a network with
better predictive power for white oat using methodologies
based on artificial intelligence, and machine learning.
Seventy-eight white oat genotypes were evaluated. The
design was randomized blocks with three replications.
The models were evaluated with and without fungicide,
and prediction models were established using four sets
of experiments. The grain yield was used as a response
trait the others as explanatory traits. The coefficient of
determination was considered to evaluate the proposed
methodologies. The importance of the traits was assessed
through the impact of destructuring or disturbing the
information of a given input on the estimation of R?. For
machine learning, decision trees, bagging, random forest,
and boosting were used. The traits indicated to assist in
decision-making are plant height, leaf rust severity, and
lodging percentage. The R’ ranged from 30.14% - 96.45%
and 10.57% - 94.61% for computational intelligence and
machine learning, respectively. A high estimate of the co-
efficient of determination, which was larger than the other

estimates, was obtained using the bagging technique.

Keywords: Avena sativa L.; multiple regression; decision

trees; Artificial neural networks.
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INTRODUCTION

White oats (Avena sativa L.) are of great agricultural
importance worldwide. Brazil is the fifth-largest producer
globally and has experienced a substantial increase in areas
cultivated with white oats in the last ten years (Conab,
2022). This crop can be used to produce grain, forage, and
straw in a no-tillage system (Corazza et al., 2021). Oat
forage is preferred over other annual forage crops because
of its high palatability and dry matter content (McCartney
et al., 2008; Kim et al., 2014; Sharma ef al., 2022).

Estimating the importance of predictor traits in breed-
ing programs allows for faster progress and selecting and
predicting traits with low heritability and/or measurement
difficulty (Silva Junior ef al., 2021 and 2023). Although the
simultaneous assessment of traits provides a wide variety
of information, identifying which predictor trait is more
critical is challenging for breeders (Parmley et al., 2019).
The estimation of the importance of traits can be performed
using artificial neural networks (ANNs) with algorithms
such as that proposed by Goh (2005), who modified the
Garson (1991) algorithm (Goh, 2005), which consists of
partitioning the neural network connection weights to
determine the relative importance of each input trait in the
network.

Regression, artificial intelligence, and machine learn-
ing-based methodologies have been successfully used
in studies of predicting phenotypic traits. Parmley et al.
(2019) evaluated high-dimensional phenotypic traits in
soybeans through a machine learning approach to predict
seed yield for the prescriptive development of cultivars for
agricultural practices. Silva Junior et al. (2023) used these
methodologies to predict grain yield, grain length-width
ratio, and panicle length in flood-irrigated rice. Silva Junior
et al. (2021) evaluated the importance of auxiliary traits of
the main trait based on phenotypic information and previ-
ously known genetic structure information using computa-
tional intelligence and machine learning to develop good
predictive tools in breeding programs. However, there are
no studies in the literature related to yield prediction and
verification of the importance of traits for grain yield in
white oat cultures.

Given the above, this research aims to (1) compare
different methods to predict grain yield in white oat and
evaluate the model’s performance (2) evaluate the relation-
ship between predictor and grain yield traits in white oat

and (3) identify more relevant predictors based on different

prediction approaches. For that, we employed three predic-
tive models (regression, artificial intelligence, and machine
learning) and some plant trait related to grain yield such

as plant height, leaf rust severity, and lodging percentage.
MATERIALS AND METHODS

Experimental data

The field experiment was carried out in the experimen-
tal area of the Instituto Regional de Desenvolvimento Rural
(IRDeR) at the Universidade Regional do Noroeste do
Estado do Rio Grande do Sul (UNIJUI) located in the mu-
nicipality of Augusto Pestana, Rio Grande do Sul, Brazil, at
coordinates 28° 26’30 S and 54° 00° 58" W and an altitude
of 280 m. The soil is classified as typical Dystric Rhodic
Ferralsol (World Reference Base, 2015). According to the
Koeppen climate characterization, the region’s climate
is of the Cfa type (humid subtropical), with four distinct
seasons. The average annual temperature is 19.9 °C, and
the average annual rainfall is 1774 mm. The collection of
plant material is in accordance with relevant institutional,
national and international guidelines and legislation.

Seventy-eight white oat genotypes were evaluated in
2018 and 2019. Each year, they were assessed with and
without a fungicide to establish in four sets of experiments
(E1, E2, E3, and E4). The design was randomized blocks
with three replications.

Grain yield (GY, kg ha') was used as the response trait.
Other traits were used as explanatory traits (inputs), mass of
one thousand grains (MTG, grams); hectoliter weight (HW,
kg ha'); days between emergence and maturation (DEM,
day); lodging percentage (LP, percentage, where 1% means
minimal bedding and 100% means complete bedding);
days from emergence to flowering (DEF, day); days from
flowering to maturity (DFM, day); plant height (PH, cm);
leaf rust severity (LRS); stem rust severity (SRS); and leaf
spots (LS). They were used to in artificial neural networks

for white oat genotypes.

Methodologies for predicting and verifying the
importance of traits

Multiple regression

Stepwise multiple regression is a trait selection meth-
od that aims to explain the relationship between a set of
independent traits and a dependent trait (Ghani & Ahmad,
2010). The adopted model is represented by Equation:
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where y is the response trait, x, a x, are the explanatory
traits, 3, represents the intercept, 8, e f, are the linear coef-
ficients associated with x, a x,, and ¢ residual effect.

The estimate of the coefficient of determination (R?)
was used to verify how much of the independent variable is
explained by the total variation of the dependent trait. The

description of R? is found in Equation:
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where y is the observed values, and y is the predicted.

Pearson’s correlation analysis was used to evaluate the
relationship between GY and other traits (Mukaka, 2012).

Computational intelligence for the importance of
traits

Multilayer perceptron - MLP

The importance of predictors in an MLP network was
quantified using two techniques. The first technique, based
on Garson’s (1991) algorithm modified by Goh (2005) con-
sists of partitioning neural network connection weights to
determine the relative importance of each input trait within
the network.

The equation of the relative importance of traits is given as
RI=VW
The matricial model is shown as follows:
RI]

leme) ) (i)

RI,

k

RI =

where W ¢ represents the matrix of weights of the layer ¢
neuron, considering N, neurons and N, inputs; E is the first
neuron that starts from inputs; y refers to the desired output
layer and RI is the relative importance of the trait.

After the network is established, the importance of traits
(inputs) can also be obtained by considering the impact of
destructuring or disturbing the information of a given input
on the estimation of the coefficient of determination.

The relative importance of the trait by the permutation
of R? is described in the following equation:

VR, = R, -R’

perm,x;
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where R’ is the R’ of the RNA model adjusted to the
o 18 the R? of

the ANN model fitted to the modified dataset where x, is

permuted; and Ezp

observed predictor and response traits; Rzp

~after

erm,xi

o 18 the average value of Rzp
the m™ permutation of the datasets.

After some criteria were used on the best topology,
the following MLP network structures were adopted: (a)
topology 1: 10-11-1: ten inputs with 11 hidden neurons in
the middle layer and one neuron in the output layer; (b)
topology 2: 10-11-11-1: ten inputs and two hidden layers
with 11 neurons in the middle layers and one neuron in the
output layer; (c) topology 3: 10-11-11-11-1: ten inputs and
three hidden layers with 11 neurons in the middle layers
and one neuron in the output layer; (d) topology 4: 10-3-
4-11-1: ten inputs and three hidden layers with 3, 4 and 11
neurons in the middle layers and one neuron in the output

layer.

Radial basis function — RBF

The prediction efficiency is measured by the coefficient
of determination and the relative importance of each input
estimated by the technique of destructuring the informa-
tion of each explanatory trait, as already described for the
MLP.

Machine learning for the importance of traits

To quantify the importance of traits through a machine
learning approach, the decision tree and its refinements,
random forest, bagging, and boosting were used Silva
Junior et al. (2023) and Costa et al. (2021).

The importance of trait IV is described in the following

equation:
II/X = MSEperm,xv - MSEnperm
where MSE is the permutation of the values of each

perm,xi

trait in the dataset where x, is swapped, MSEWW represents

the original nonpermuted trait data.

Importance of traits in reduced models for grain yield
prediction

The biometric technique that led to the best GY pre-
diction results and information regarding the importance
of predictors was considered. The mean estimate of the
relative contributions of the explanatory traits to predic-
tion, after correcting for auxiliary traits for minor relative
contributions. The choice of this technique was based on
the estimation of the foreign certificate and on the traits of

minor auxiliary functions.
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Training and validation sets

The dataset was divided into two parts: a training
and validation set. The training set included the same
individuals for modeling using all methodologies and was
composed of 67% of the individuals, which corresponds
to 2/3 of the randomly selected individuals. The remaining
33% (1/3) of the individuals constituted the validation set.
In previous studies, 60% to 90% of individuals constituted
the training set (Gonzéalez-Camacho et al., 2012). The anal-
yses were performed with the aid of R software using the
NeuralNetTools package (Beck, 2018) and Genes (Cruz,
2016).

RESULTS AND DISCUSSION

Prediction of grain yield using different approaches

The ML approach presented the best grain yield predic-
tion performance was bagging (R? of 93.44%), followed by
boosting (R? of 83.96), while the random forest approach
showed the worst performance (R? of 39.79) (Table 1).
The estimate of the coefficient of determination for all
methodologies using the ten defining agronomic traits for
the prediction of white oat grain yield (GY) is shown in
Table 1.

Based on Table 1, it is possible to compare the approach
that is more efficient for the prediction of GY. Higher val-
ues of R? indicate that the prediction target trait has a better
fit considering the ten explanatory traits used as predictors
in this analysis (Silva Junior et al., 2023). Among the
methodologies used in this study, it was found that multiple

regression presented a lower estimate of R?, indicating the
existence of nonlinear associations between the explanato-
ry traits not considered in the model. Artificial intelligence
and machine learning methodologies stood out for their
ability to extract nonlinear information from model inputs
(Parmly et al., 2019; Skawsang et al., 2019), as seen in Ta-
ble 1. Other authors have already highlighted the abilities of
neural networks (Silva et al., 2014; Sant’ Anna et al., 2015)
and machine learning approaches (Sousa ef al., 2020; Silva
Junior et al., 2021) to better capture nonlinear relationships
when compared to conventional methodologies.

The results obtained by different approaches show that
there was a discrepancy between the maximum estimate
of R? for the predictive trait in the same environments
(Table 1). This discrepancy in the estimate of R’ was also
reported by (Silva Junior et al., 2023). It is noteworthy that
the differences in results obtained in these analyses are in-
dicative that the environment influences the estimate of R’
and, consequently, the choice of the best prediction model
for the response trait.

The machine learning approach proved to be more effi-
cient than the other approaches (Table 1). There was a low
estimate of the maximum R’ when using the random forest
procedure in all environments. On the other hand, this
procedure was superior to the multiple regression approach
for the same environment, except the environment without
fungicide (E3), where a value of 10.57% was obtained.
The low estimate of the maximum R’ in the random forest
procedure was also demonstrated for flood-irrigated rice
Silva Junior et al. (2023) and simulated data with differ-

Table 1: Mean of the maximum estimate of the coefficient of determination for the training set, in four environments corresponding

to the data set of experiments no and with fungicide in two agricultural years, to predict the grain yield in white oat (4vena sativa L.)

Approach Technique El E2 E3 E4 Average of performance
BO 92.29 86.69 81.23 79.23 83.96
ML DT 85.37 76.39 61.78 64.65 70.52
BA 94.61 93.89 92.70 92.98 93.44
RF 64.91 55.09 10.57 24.48 39.79
PMC-1 73.25 71.42 30.14 59.84 65.63
PMC-2 96.45 90.12 56.72 57.94 74.03
Al PMC-3 86.13 88.58 61.45 68.62 77.38
PMC-4 75.16 85.32 87.34 58.77 80.24
RBF 90.12 73.76 80.72 76.44 78.58
Conventional RM 61.02 46.07 20.67 32.72 39.40

Al Artificial Intelligence; ML: Machine Learning; RM: Multiple Regression; PMC: Multilayer Perceptron; PMC: Multilayer Perceptron; PMC-1:
Multilayer Perceptron with (10-11-1); PMC-2: Multilayer Perceptron (10-11-11-1); PMC-3: Multilayer Perceptron (10-11-11-11-1); PMC-4: Multilayer
Perceptron (10-3-4-11-1); RBR: Radial Base Network; DT: Decision Tree; RF: Random Forest; BA: Bagging; BO: boosting. E: environments. E1 and

E3: no fungicide; E2 and E4: with fungicide.
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ent heritability Silva Junior ef al. (2021). This procedure
involves randomly resampling the set of explanatory traits
and building several decision trees that constitute a random
forest, allowing the prediction and estimation of scores that
will lead to the evaluation of the importance of predictors
in a process repeated several times.

Regarding the environments and the bagging proce-
dure, the estimates of R? were higher than 92.70%, making
bagging the best approach for the analyzed datasets. High
estimates (with reference to values of approximately
80%) of R’ were also obtained using machine learning
methodologies with boosting and bagging procedures on
all prediction datasets (Table 1). Silva Junior ef al. (2021)
showed that the machine learning approaches with bagging
and boosting procedures were more consistent in obtaining
a higher overall mean estimate of R’ of predictive traits.
The decision tree (DT) and random forest methodologies
did not stand out from other machine learning procedures
(Table 1).

Thus, machine learning is actually more efficient for
selecting phenotypic traits because it can handle reduced
or redundant information about phenotypic traits (Sousa
et al., 2020). Costa et al. (2021) evaluated the importance
of variables using bagging, random forest, boosting, deci-
sion tree, MLP and RBF and reported that MLP and RBF
achieved better results. Silva Junior et al. (2023) verified
that the computational intelligence and machine learning
methodologies in prediction allowed the identification of
explanatory phenotypic traits that should be prioritized and
established as auxiliary traits for indirect selection.

Artificial intelligence approaches based on RBF yield-
ed estimates with R? greater than 70% in all environments
(Table 1). In this procedure, the maximum R? was 90.12%
(= 5.79), and the minimum was 73.75% (£ 1.67), corre-
sponding to environments E1 and E2, respectively. Silva
Janior et al. (2023) found a maximum R’ ranging from 48%
to 99% in different environments for flood-irrigated rice
crops. For simulated data with different genetic structures,
the maximum estimate of R’ ranges from 44% to 54%
(Silva Junior et al, 2021), and (Sant’Anna et al., 2020)
obtained consistent results of R’ for different genetic struc-
tures. Rosado et al. (2020) evaluated bean cultivars and
obtained an estimate of R? for the trait days to first flower
and flowering days of 94.10% and 94.40%, respectively.
This procedure has a good ability to handle complex inter-
actions compared to semiparametric and linear regression
approaches (Sant’Anna ef al., 2019 and 2020). Generally,
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the data used as training information is quickly learned
in RBF, providing a unique solution compared to percep-
tron ANNs (Sant’Anna et al., 2020; Gonzalez-Camacho
etal.,2012).

Sant’Anna et al. (2020) applied the RBF in studies
using simulated traits with 30% and 60% heredity for
trait selection. The authors found that greater efficiency in
the selection could be obtained using the RBF when the
scenario involved epistatic interactions in the gene control
of the studied traits. Gonzalez-Camacho et al. (2012) ob-
served that it is possible to improve prediction in nonpara-
metric models when the selection includes markers that
are not directly related to the traits of interest. Silva Junior
et al. (2023) applied the RBF to predict grain yield, grain
length-width ratio, and panicle length in flood-irrigated
rice. The authors argued that the RBF has good perfor-
mance in predicting the importance of traits. Silva Junior
et al. (2021) evaluated the importance of auxiliary traits of
the main trait based on phenotypic information and previ-
ously known genetic structure information using the RBF
and demonstrated the efficiency of this network to quantify
the importance of traits.

Regarding MLP-1 (10-11-1), the highest estimate of
the maximum R’ was observed in E1 (73.25%) and the
lowest, with an estimate of 30.14%, was observed in E3.
Both environments correspond to those without fungicide.
In the procedures MLP-2 (10-11-11-1) and MLP-3 (10-
11-11-11-11-1), the highest estimates were observed in El
and E2 and the smallest in E3 and E4, respectively. MLP-3
(10-11-11-11-1) and MLP-4 (10-3-4-11-1) have the same
number of hidden layers. We observed lower estimates of
the maximum R’ for the MLP-4 procedure, except in the E3
environment. This shows that the number of neurons in the
layer influences the estimation of the maximum R’. Silva
Junior et al. (2021) argued that the number of neurons in-
fluences the estimation of the coefficient of determination.

The MLP network is widely used in the predictive pro-
cess (Silva Junior et al., 2021; Sousa et al., 2020) since the
success of this network has already been demonstrated by
several research groups, who have shown mathematically
that, with only a single hidden layer, this network works
very well with different numbers of neurons in the hidden
layer (Sousa et al., 2020).

The efficiency of ANNSs in prediction problems, given
their ability to extract relevant information from large
datasets and generalize relatively inaccurate information

(Sant’Anna et al., 2020), was very well expressed in the
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results obtained (Table 1). The same can be seen for meth-
odologies based on machine learning, which are capable
of dealing with more reduced or redundant information in
the input traits (Silva Junior ef al., 2023). However, another
study that is as important as prediction and that is often not
carried out is the identification of more important predictive
traits, which is an important factor in the decision-making
process (Beucher et al., 2019). Thus, after the prediction
analyses, analyses were carried out to quantify the impor-
tance of traits through artificial intelligence and machine
learning methodologies to identify, among the set of explan-
atory traits, those that should be prioritized and identified as
auxiliary traits in indirect responses to selection.

Linear relationship between predictor and grain
yield traits in white oat

The greatest linear associations with GY may be a pre-
liminary indication that individual traits are important in its
prediction. In multivariate prediction models, a predictor
trait with high correlation with the response trait may lose
its importance due to its redundancy, considering that, in
the model, it may be represented by another association.
Thus, in addition to quantifying the linear relationships
between the predictor and response, it is important to quan-
tify and appreciate the linear relationships, expressed by

linear correlation coefficients, between all predictors in the

search for redundancies. In this work, these associations
were represented in a correlation network that contains
red and green lines that represent negative and positive
correlations, respectively, and their width is proportional to
the magnitude of the correlations (Figure 1). Regarding the
phenotypic correlation network, the structure of correlated
groups was obtained to predict GY. In this network, the
similarity between the phenotypic traits and the phenotypic
correlation patterns was highlighted.

The traits that presented groups with GY in E1 were
MTG, HW and PH, which showed positive correlations but
varied in magnitude, and LRS, which showed a negative
correlation. To E2, the positively correlated traits consisted
of PH and MTG and the negatively correlated traits consist-
ed of LS and DFM. For E3, which represents a case with no
fungicide, the trait that was negatively correlated was SRS.
Environment 4, the positively correlated group consisted of
HW and DEF and the negative correlated group consisted
of DEM (Figure 1).

Importance of trait in prediction using an artificial
intelligence approach

Multilayer perceptron (MLP)

Estimates of the coefficient of determination of grain

yield prediction with MLP attribute perturbation of the

@ Grain
© Plant
© Disease

Figure 1: Phenotypic correlation network for the three distinct groups in four environments corresponding to without and with fungi-
cide in two agricultural years, to predict grain yield in white oat (4vena sativa L.). The line width is proportional to the strength of the
correlation. E1 and E3; E2 and E4 represent the environments without and with fungicide, respectively. The orange color represents the
grain characteristics; The yellow color represents the plant characteristics and the green disease severity. MTG = Thousand Grain Mass
in grams; HW = Hectoliter Weight; DEM = Days between Emergency and Maturation; PH= percentage of lodging; GY = Grain yield
in kilograms per hectare; DEF = Days from Emergence to Flowering; DFM= Days from Flowering to Maturation; PH= Plant Height;
LRS= Leaf Rust Severity; SRS=Stem Rust Severity and LS= Leaf Spots.
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genotypic information are shown in Figure 2. These re-
sults show large discrepancies in R’ when comparing the
environments with each other, which makes interpretation
difficult. In environments E1 and E4, which correspond to
environments without fungicide, the traits LP, PH, LRS
were efficient in quantifying the response trait GY due
to the reduction in the estimate of R’ as a function of the
attribute perturbation of the phenotypic information.

Regardless of the number of neurons in the output layer
and a single hidden layer, the most important traits were
determined to predict GY (Figure 3). This result shows
that these traits are important in predicting GY, as the
perturbation of their values led to a considerable reduction
in the quality of the fit. In the E2 environment, MTG was
the most important trait in predicting GY.

There was a difference in the number of neurons in
the output layer and hidden layer, indicating that the most
important traits in E4 correspond to the fungicide environ-
ment. With only one neuron in the output layer and a single
hidden layer, DEF and SRS were the most important traits
due to the reduction in the estimate of R?. With two neurons

in the middle layer and a single hidden layer, LRS and LS
were the most important. With one neuron in the input layer
and three hidden layers with 11 neurons in the intermediate
layer and one neuron in the output layer, the traits that
proved to be the most important were HW and SRS. On
the other hand, with three hidden layers with 3, 4 and 11
neurons in the intermediate layer, the important traits in
predicting the GY were LRS, DEF and HW. Given the
significant decreases in the estimated values of R? observed
when the variables were disturbed, Silva Junior et al. 2023
reported that the most important traits were grain width and
length in irrigated rice when using only one neuron in the
output layer and a single hidden layer.

The importance of the traits was quantified by assigning
destructuring to the genotypic information referring to each
trait to observe the changes in the values of R’ It is im-
portant to note that reductions in the estimative of R’ after
attribute disruption of the genotypic information referring
to each trait are indicative that this trait is important in
relation to the others for purposes of prediction with the

already established network.

Edl
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MTG HW DEF DFM DEM PH
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Variable

MTG HW DEF DFM DEM PH LP LRS SRS LS

Figure 2: Estimates of the coefficient of determination of grain yield prediction in white oat (4vena sativa L.), using PMC attribut-
ing perturbation to genotypic information. MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight; DEM = Days between
Emergency and Maturation; PH= percentage of lodging; GY = Grain yield in kilograms per hectare; DEF = Days from Emergence to
Flowering; DFM= Days from Flowering to Maturation, PH= Plant Height; LRS= Leaf Rust Severity; SRS=Stem Rust Severity and
LS= Leaf Spots; E: environments. E1 and E3: no fungicide; E2 and E4: with fungicide.
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Radial basis function (RBF)

The estimation of the importance of traits in white oat
based on attribute disturbance of the information of an input
trait after the RBF has been established is described in Fig-
ure 4. In this table, the relative importance of each input is
estimated by the technique of destructuring the information
of each explanatory trait. When using this strategy, drastic
reductions in the values of R? were observed for the most
important traits and LRS for the predictive variable GY in
the E1 and E4 environments. In practice, the intensity of this
trait reduces genetic progress to increase grain yield. In the
E2 environment, the trait that suffered the greatest reduction
in R? was DMF, with an estimate of 44.47%. This feature in-
creased grain yield, as more photoassimilates were produced
and translocated to grains. However, late cycle cultivars tend
to be more productive in relation to the initial cycle, and an
increase in the amount of photoassimilates that are translo-
cated to the grains are obtained (Silva Junior et al., 2023).

The results show that the most important trait using the
RBF was MTG in the E2, E3 and E4 environments, with
estimates of 58.97%, 47.98% and 40.97%, respectively. In

practice, MTG influences the grain yield in white oats, since
the higher MTG is, the higher the GY. This justifies the
results of this study for white oats in the prediction of GY.
The results obtained support the expectation about the
RBF with respect to quantifying and revealing the impor-
tance of the traits using the strategy of causing disturbances
from the permutations or fixation of the phenotypic values
of the input traits. Our study demonstrated the ability of
RNA to quantify the importance of phenotypic traits in
white oats. Techniques that show the impact of interruption
or disturbance in the information of a given input in the es-
timation of the coefficient of determination and partition of
the connection weights of the ANN were presented. These
techniques were effective in estimating the true importance
of phenotypic traits. Therefore, there is a certain agreement
between the results found by the two computational intelli-

gence methodologies of MLP networks and RBF networks.

Importance of traits in predicting by machine
learning

Table 2 shows the means of the relative contributions

of the explanatory traits for grain yield prediction by esti-

Determination coeficient “

20 40 60 80

E1 E2
TOP4 -
TOP3-
TOP2-
TOP1 -

Topology

E3 E4
TOP4-
TOP3-
TOP2-
TOP1 -

MTG HW DEF DFM DEM PH LP LRS SRS LS

MTG HW DEF DFMDEM PH LP LRS SRS LS

Variable

Figure 3: Estimates of the coefficient of determination in different topologies for predicting grain yield in white oat (4vena sativa
L.), using PMC attributing disturbance to genotypic information. MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight;
DEM = Days between Emergency and Maturation; PH= percentage of lodging; GY = Grain yield in kilograms per hectare; DEF = Days
from Emergence to Flowering; DFM= Days from Flowering to Maturation; PH= Plant Height; LRS= Leaf Rust Severity; SRS=Stem
Rust Severity and LS= Leaf Spots; Topology- TOP1: Multilayer Perceptron with (10-11-1); TOP2: Multilayer Perceptron (10-11-11-1);
TOP3: Multilayer Perceptron (10-11-11-11-1); TOP4: Multilayer Perceptron (10-3-4-11-1).
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mating the minimum squared error increment percentage
(SEIP), which is constructed by swapping the values of
each trait in the dataset and comparing the results with the
predictions using the original nonpermuted dataset of the
traits. In this case, unlike the strategy used for the compu-
tational intelligence methodologies of the MLP and RBF
networks, for which a lower value R’ indicated a greater
importance of a given trait for the model, in the machine
learning approach, the importance of the explanatory trait
is related to the estimation of the average decrease in the
precision of the model through the SEIP. Thus, the higher
this estimate is, the greater the importance of the trait.
Based on Table 2, the traits that obtained the highest
SEIP estimate in all machine learning methodologies in
relation to environments without fungicides were LRS,
HW, PH, and MTG in E1 and DEF, SRS, and LRS in E3.
The trait that was more efficient in these environments was
LRS. This justifies that this trait can be used in the indirect
selection process when the target prediction variable is GY.
For environments with fungicides, the most important traits
were MTG, DFM, PH, and LRS in E2 and DEF, DFM,
DEM, and LRS in E4. For the environment with fungicide,

E1

-~J
w

(%))
o

[
w

determination coefficient

o

DEFDEMDFMHW LP LRS LS MTG PH SRS
Trait

=
o
o

E3

-~
w

determination coefficient
[\] (4]
[4,] (=]

o

DEFDEMDFMHW LP LRS LS MTG PH SRS
Trait

the traits DFM and LRS proved to be efficient in estimating
the prediction of grain yield in white oat.

The random forest and bagging methodologies were
coincident in quantifying the same explanatory traits. A
similar result was reported by (Silva Junior et al., 2021).
Regarding the boosting procedure, there were discrepancies
in the results. On the other hand, this procedure was more
consistent in terms of trait prediction. In this procedure, to
estimate the importance of a trait using GY as the predictive
target, the traits MTG, HW, PH, and LRS in El and MTG,
DEF and LRS in E3 stood out in the environments without
fungicides. For the fungicide environments, the important
traits were MTG, DFM, PH, LRS, DEF, DFM, DEM, and
LRS. When using the boosting procedure, the trait that
stood out in all environments was LRS. This justifies that
this trait can be used to predict GY in white oats.

The bagging technique involves generating several
distinct training sets from the original dataset. The final
predictions are calculated by averaging all generated pre-
dictions. This is useful for decision tree and artificial neural
network techniques that are sensitive to small changes in

training data (Song et al., 2021).
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Figure 4: Coefficient estimates for determining grain yield prediction in white oat (4vena sativa L.) using the RBF attributing pertur-
bation to genotypic information. MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight; DEM = Days between Emergency
and Maturation; PH= percentage of lodging; GY = Grain yield in kilograms per hectare; DEF = Days from Emergence to Flowering;
DFM= Days from Flowering to Maturation; PH= Plant Height; LRS= Leaf Rust Severity; SRS=Stem Rust Severity and LS= Leaf
Spots; E: environments. E1 and E3: no fungicide; E2 and E4: with fungicide.
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Importance of traits in reduced models for predic-
tions using the ML approach

Machine learning

The bagging biometric technique, which led to the best
GY prediction results and provided information regarding
the importance of predictors, is considered here. The
average estimate of the relative contributions of the ex-
planatory traits for grain yield prediction in white oat using
the bagging technique after eliminating auxiliary traits of
smaller relative contributions in four environments with
and without fungicide application is shown in Table 3. The
choice of the bagging technique was based on the estimate
of the coefficient of determination (Table 1), which was
greater than 90%, and the elimination of auxiliary traits of
the smallest relative contributions, as shown in Table 2.

The importance of predictors through the elimination
of auxiliary traits of smaller relative contributions was
quantified in several ways. First, only one of the predic-
tor traits (DFM, LP, PH, and LP) in El, E2, E3, and E4,
respectively, was eliminated. Then, the two traits with the
least contribution were eliminated. Finally, the SRS and LS
traits, which showed a lower estimate of the squared error
increment percentage in all environments, were eliminated.

After eliminating auxiliary traits with smaller relative
contributions, the maximum estimate of the coefficient of
determination was similar when all auxiliary traits were
used to predict GY (Tables 1 & 3).

The literature has highlighted machine learning
techniques as efficient tools in quantifying the relative

importance of traits in view of their simplicity, the nonuse
of assumptions about the distribution of explanatory traits,
and their robustness in relation to quantity, redundancy
and environmental influences (Tan et al., 2014; Beucher
et al., 2019; Silva Junior et al., 2021). Furthermore, such
techniques do not require an inheritance specification model
and can account for nonadditive effects without increasing
the number of covariates in the model or the computation
time (Gonzalez-Recio et al., 2011). The bagging technique
shows good predictive performance in practice; it works
well for multidimensional problems and can be used with
output from multiple classes, categorical predictors, and
unbalanced problems (Gregorutti et al., 2017). Satisfactory
results of trait selection using the bagging and random for-
est algorithms in the presence of correlated predictors were
reported by (Ferreira et al., 2017). Discriminatory power,
redundancy, precision, and complexity can influence the
indices or statistics used to quantify the importance of
auxiliary traits in predicting a main trait.

Genetic improvement for desired traits in different
crops has been a time-consuming, laborious and expensive
process. Breeders study generations of plants and identify
and modify desired genetic traits as they assess how traits
are expressed in offspring (Ferreira et al., 2017). The appli-
cation of computational intelligence and machine learning
to identify ideal sets of observable traits (phenotypes) can
allow informed decisions and yield highly relevant results
in breeding programs. In addition, these methodologies
can help predict auxiliary traits with the best performance
under different agricultural management practices.

Table 2: Average estimate of the relative contributions of the explanatory traits for grain yield prediction in white oat using a machine

learning approach, in four environments corresponding to without and with fungicide application

E1l E2 E3 E4
VA BA RF BO BA RF BO BA RF BO BA RF BO
MTG 7.58 7.94 12.37 10.47 9.84 10.89 1.04 1.53 4.49 3.55 3.21 3.75
HW 10.11 10.68 15.29 2.19 2.23 6.57 22 1.75 3.51 3.83 4.44 3.93
DEF 3.29 242 7.55 6.85 5.79 6.73 3.58 3.5 4.60 11.46 11.49 9.18
DFM 1.59 221 2.97 16.94 16.84 12.25 0.8 -0.4 4.22 5.57 4.68 4.82
DEM 3.46 3.1 6.35 6.44 6.06 6.28 2.14 1.86 3.43 6.12 5.95 5.17
PH 10.74 10.3 9.65 10.01 8.29 9.32 -0.93 -0.24 2.72 0.8 -0.45 1.02
LP 2.83 2.49 5.94 1.36 1.08 2.79 3.04 3.04 2.96 0.36 -0.66 0.89
LRS 20.87 20.1 29.59 9.27 9.29 16.05 9.91 10.91 12.29 4.19 4.58 7.02
SRS 7.32 7.76 5.60 3.09 2.25 3.65 3.52 3.97 3.71 0.8 1.62 2.04
LS 3.11 3.67 4.69 3.62 291 3.74 3.22 2.95 3.30 3.99 3.49 3.59

MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight; DEM = Days between Emergency and Maturation; PH= percentage of lodging;
GY = Grain yield in kilograms per hectare; DEF = Days from Emergence to Flowering; DFM= Days from Flowering to Maturation; PH= Plant Height;
LRS= Leaf Rust Severity; SRS=Stem Rust Severity and LS= Leaf Spots; FA: random forest; BA: Bagging; BO: Boosting; VA: auxiliary variable; E:

environments. E1 and E3: no fungicide; E2 and E4: with fungicide.
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Table 3: Estimate of the coefficient of determination for the training set, in four environments corresponding to the data set of experi-

ments without and with fungicide in two agricultural years, to predict the grain yield in white oat (Avena sativa L.) utilizing the bagging

technique

Predictors El E3 E4
R?(T=10) 94.61 93.89 92.70 92.98
Deleted DFM PH LP
R’(T=9) 94.85 94.34 92.83 93.05
Deleted DFM, LP LP, HW PH, DFM LP, PH
R?(T=8) 94.26 93.50 92.03 93.11
Deleted SRS, LS SRS, LS SRS, LS SRS, LS
R?(T=8) 94.95 94.40 91.74 92.84

HW = Hectoliter Weight; LP= percentage of lodging; DEF = Days from Emergence to Flowering; DFM= Days from Flowering to Maturation; PH=
Plant Height; SRS=Stem Rust Severity and LS= Leaf Spots; E: environments. E1 and E3: no fungicide; E2 and E4: with fungicide; R’: coefficient of

determination; T: traits.

We compared different approaches to selecting or dis-
carding traits that have been recently proposed to identify
relevant predictive variables within a regression problem.
Furthermore, we included in our comparison a traditional
method that aims to find a small subset of important traits
with optimal predictive performance in the white oat crop.
It is noteworthy that the traits used in this study are difficult
to obtain, and their evaluation can be costly if there is a
greater number of genotypes to be evaluated. In this con-
text, the study of the most important traits in the prediction
becomes necessary since it is possible to reduce physical
efforts, costs, use of labor, and time in the experimentation
(Ferreira et al., 2017).

Therefore, our study presents the performance of some
methodologies to assess the relative contributions of each
variable through computational intelligence and machine
learning in white oat cultures. Thus, the approach to esti-
mate the effect of explanatory traits on genetic improvement
has successfully identified the true importance of each trait,
including those that exhibit strong and weak correlations
with the main trait, which in our case is grain yield.

Methodologies based on machine learning and computa-
tional intelligence do not depend on stochastic information
and tend to be more efficient, while conventional method-
ologies depend on the normal distribution of phenotypic
traits. Furthermore, in machine learning and computational
intelligence methodologies, no assumptions about the
model are made, and complex factors in predictive models
can be captured. In machine learning, a priori knowledge
of prediction is not needed if the data produce these effects,
and no assumptions are made about the distribution of

phenotypic values (Sousa et al., 2020). Machine learning

algorithms have the advantage of modeling data nonlin-
early and nonparametrically (Osco et al., 2020). Unlike
many traditional statistical methods, these algorithms are
built with the advantage of handling noisy, complex, and
heterogeneous data (Osco et al., 2020). Researchers now
have the ability to identify the individual and interactive
contributions of predictor traits to the white oat crop using

artificial intelligence and machine learning.

CONCLUSION

Computational intelligence and machine learning meth-
odologies were used to quantify the importance of explan-
atory traits in predicting white oat grain yield. The model
with only one hidden layer was efficient in determining
the relative importance of variables in white oat. The traits
indicated to assist in decision-making are plant height, leaf
rust severity, and lodging percentage. The R’ ranged from
30.14%-96.45% and 10.57%-94.61% for computational
intelligence and machine learning, respectively.

A high estimate of the coefficient of determination was
obtained using the bagging technique, which was higher
than that of the other approaches. Simpler models, exclud-
ing predictors, are as efficient as more complex models,
indicating that quantifying the importance of predictors
is important to minimize costs, ensuring the same level of

efficiency as that of the predictive models.
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