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ABSTRACT

The prediction of traits allows the breeder to guide 
strategies to select and accelerate the progress of genetic 
improvement. The objective of this work was to determine 
the best prediction approach and establish a network with 
better predictive power for white oat using methodologies 
based on artificial intelligence, and machine learning. 
Seventy-eight white oat genotypes were evaluated. The 
design was randomized blocks with three replications. 
The models were evaluated with and without fungicide, 
and prediction models were established using four sets 
of experiments. The grain yield was used as a response 
trait the others as explanatory traits. The coefficient of 
determination was considered to evaluate the proposed 
methodologies. The importance of the traits was assessed 
through the impact of destructuring or disturbing the 
information of a given input on the estimation of R2. For 
machine learning, decision trees, bagging, random forest, 
and boosting were used. The traits indicated to assist in 
decision-making are plant height, leaf rust severity, and 
lodging percentage. The R2 ranged from 30.14% - 96.45% 
and 10.57% - 94.61% for computational intelligence and 
machine learning, respectively. A high estimate of the co-
efficient of determination, which was larger than the other 
estimates, was obtained using the bagging technique.

Keywords: Avena sativa L.; multiple regression; decision 
trees; Artificial neural networks.
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INTRODUCTION
White oats (Avena sativa L.) are of great agricultural 

importance worldwide. Brazil is the fifth-largest producer 
globally and has experienced a substantial increase in areas 
cultivated with white oats in the last ten years (Conab, 
2022). This crop can be used to produce grain, forage, and 
straw in a no-tillage system (Corazza et al., 2021). Oat 
forage is preferred over other annual forage crops because 
of its high palatability and dry matter content (McCartney 
et al., 2008; Kim et al., 2014; Sharma et al., 2022).

Estimating the importance of predictor traits in breed-
ing programs allows for faster progress and selecting and 
predicting traits with low heritability and/or measurement 
difficulty (Silva Junior et al., 2021 and 2023). Although the 
simultaneous assessment of traits provides a wide variety 
of information, identifying which predictor trait is more 
critical is challenging for breeders (Parmley et al., 2019). 
The estimation of the importance of traits can be performed 
using artificial neural networks (ANNs) with algorithms 
such as that proposed by Goh (2005), who modified the 
Garson (1991) algorithm (Goh, 2005), which consists of 
partitioning the neural network connection weights to 
determine the relative importance of each input trait in the 
network.

Regression, artificial intelligence, and machine learn-
ing-based methodologies have been successfully used 
in studies of predicting phenotypic traits. Parmley et al. 
(2019) evaluated high-dimensional phenotypic traits in 
soybeans through a machine learning approach to predict 
seed yield for the prescriptive development of cultivars for 
agricultural practices. Silva Junior et al. (2023) used these 
methodologies to predict grain yield, grain length-width 
ratio, and panicle length in flood-irrigated rice. Silva Junior 
et al. (2021) evaluated the importance of auxiliary traits of 
the main trait based on phenotypic information and previ-
ously known genetic structure information using computa-
tional intelligence and machine learning to develop good 
predictive tools in breeding programs. However, there are 
no studies in the literature related to yield prediction and 
verification of the importance of traits for grain yield in 
white oat cultures.

Given the above, this research aims to (1) compare 
different methods to predict grain yield in white oat and 
evaluate the model’s performance (2) evaluate the relation-
ship between predictor and grain yield traits in white oat 
and (3) identify more relevant predictors based on different 

prediction approaches. For that, we employed three predic-
tive models (regression, artificial intelligence, and machine 
learning) and some plant trait related to grain yield such 
as plant height, leaf rust severity, and lodging percentage.

MATERIALS AND METHODS

Experimental data

The field experiment was carried out in the experimen-
tal area of the Instituto Regional de Desenvolvimento Rural 
(IRDeR) at the Universidade Regional do Noroeste do 
Estado do Rio Grande do Sul (UNIJUÍ) located in the mu-
nicipality of Augusto Pestana, Rio Grande do Sul, Brazil, at 
coordinates 28° 26’ 30’’ S and 54° 00’ 58’’ W and an altitude 
of 280 m. The soil is classified as typical Dystric Rhodic 
Ferralsol (World Reference Base, 2015). According to the 
Köeppen climate characterization, the region’s climate 
is of the Cfa type (humid subtropical), with four distinct 
seasons. The average annual temperature is 19.9 °C, and 
the average annual rainfall is 1774 mm. The collection of 
plant material is in accordance with relevant institutional, 
national and international guidelines and legislation.

Seventy-eight white oat genotypes were evaluated in 
2018 and 2019. Each year, they were assessed with and 
without a fungicide to establish in four sets of experiments 
(E1, E2, E3, and E4). The design was randomized blocks 
with three replications.

Grain yield (GY, kg ha-1) was used as the response trait. 
Other traits were used as explanatory traits (inputs), mass of 
one thousand grains (MTG, grams); hectoliter weight (HW, 
kg ha-1); days between emergence and maturation (DEM, 
day); lodging percentage (LP, percentage, where 1% means 
minimal bedding and 100% means complete bedding); 
days from emergence to flowering (DEF, day); days from 
flowering to maturity (DFM, day); plant height (PH, cm); 
leaf rust severity (LRS); stem rust severity (SRS); and leaf 
spots (LS). They were used to in artificial neural networks 
for white oat genotypes.

Methodologies for predicting and verifying the 
importance of traits

Multiple regression

Stepwise multiple regression is a trait selection meth-
od that aims to explain the relationship between a set of 
independent traits and a dependent trait (Ghani & Ahmad, 
2010). The adopted model is represented by Equation:
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where y is the response trait, x1 a xk are the explanatory 
traits, β0 represents the intercept, β1 e βk are the linear coef-
ficients associated with x1 a xk, and ɛ residual effect.

The estimate of the coefficient of determination (R2) 
was used to verify how much of the independent variable is 
explained by the total variation of the dependent trait. The 
description of R2 is found in Equation:

where y is the observed values, and ŷ is the predicted.
Pearson’s correlation analysis was used to evaluate the 

relationship between GY and other traits (Mukaka, 2012).

Computational intelligence for the importance of 
traits

Multilayer perceptron - MLP

The importance of predictors in an MLP network was 
quantified using two techniques. The first technique, based 
on Garson’s (1991) algorithm modified by Goh (2005) con-
sists of partitioning neural network connection weights to 
determine the relative importance of each input trait within 
the network.

The equation of the relative importance of traits is given as

The matricial model is shown as follows:

where Wx
c represents the matrix of weights of the layer c 

neuron, considering Nj neurons and Nj-1 inputs; E is the first 
neuron that starts from inputs; y refers to the desired output 
layer and RI is the relative importance of the trait.

After the network is established, the importance of traits 
(inputs) can also be obtained by considering the impact of 
destructuring or disturbing the information of a given input 
on the estimation of the coefficient of determination.

The relative importance of the trait by the permutation 
of R2 is described in the following equation:

where R2
obs is the R2 of the RNA model adjusted to the 

observed predictor and response traits; R̄2
perm,xi is the R2 of 

the ANN model fitted to the modified dataset where xi is 
permuted; and R̄2

perm,xi is the average value of R2
perm,xi after 

the mth permutation of the datasets.
After some criteria were used on the best topology, 

the following MLP network structures were adopted: (a) 
topology 1: 10-11-1: ten inputs with 11 hidden neurons in 
the middle layer and one neuron in the output layer; (b) 
topology 2: 10-11-11-1: ten inputs and two hidden layers 
with 11 neurons in the middle layers and one neuron in the 
output layer; (c) topology 3: 10-11-11-11-1: ten inputs and 
three hidden layers with 11 neurons in the middle layers 
and one neuron in the output layer; (d) topology 4: 10-3-
4-11-1: ten inputs and three hidden layers with 3, 4 and 11 
neurons in the middle layers and one neuron in the output 
layer.

Radial basis function – RBF

The prediction efficiency is measured by the coefficient 
of determination and the relative importance of each input 
estimated by the technique of destructuring the informa-
tion of each explanatory trait, as already described for the 
MLP.

Machine learning for the importance of traits

To quantify the importance of traits through a machine 
learning approach, the decision tree and its refinements, 
random forest, bagging, and boosting were used Silva 
Junior et al. (2023) and Costa et al. (2021).

The importance of trait IV is described in the following 
equation:

where MSEperm,xi is the permutation of the values of each 
trait in the dataset where xi is swapped; MSEnperm represents 
the original nonpermuted trait data.

Importance of traits in reduced models for grain yield 
prediction

The biometric technique that led to the best GY pre-
diction results and information regarding the importance 
of predictors was considered. The mean estimate of the 
relative contributions of the explanatory traits to predic-
tion, after correcting for auxiliary traits for minor relative 
contributions. The choice of this technique was based on 
the estimation of the foreign certificate and on the traits of 
minor auxiliary functions.

y x
k

n

k k� � �
�
�� � �0

1

( )
( )

2

2 1
2

1

ˆ
1

n
i ii

n
i ii

y y
R

y y
=

=

−
= −

−

∑
∑

R1 = VW

RI

RI
RI

RI

W W W

k

N E N N N
c
c y

�

�

�

�
�
�
�

�

�

�
�
�
�

� � � � � �� �� � �

�

1

2 1 2

1 2 1 1
 IV MSE MSEx xi i

� �perm nperm,

VR R Rx xi i
� �obs perm

2 2

,



Rev. Ceres, Viçosa, v. 71, e71045 2024

4 Antônio Carlos da Silva Júnior et al.

Training and validation sets

The dataset was divided into two parts: a training 
and validation set. The training set included the same 
individuals for modeling using all methodologies and was 
composed of 67% of the individuals, which corresponds 
to 2/3 of the randomly selected individuals. The remaining 
33% (1/3) of the individuals constituted the validation set. 
In previous studies, 60% to 90% of individuals constituted 
the training set (González-Camacho et al., 2012). The anal-
yses were performed with the aid of R software using the 
NeuralNetTools package (Beck, 2018) and Genes (Cruz, 
2016).

RESULTS AND DISCUSSION

Prediction of grain yield using different approaches

The ML approach presented the best grain yield predic-
tion performance was bagging (R2 of 93.44%), followed by 
boosting (R2 of 83.96), while the random forest approach 
showed the worst performance (R2 of 39.79) (Table 1). 
The estimate of the coefficient of determination for all 
methodologies using the ten defining agronomic traits for 
the prediction of white oat grain yield (GY) is shown in 
Table 1.

Based on Table 1, it is possible to compare the approach 
that is more efficient for the prediction of GY. Higher val-
ues of R2 indicate that the prediction target trait has a better 
fit considering the ten explanatory traits used as predictors 
in this analysis (Silva Junior et al., 2023). Among the 
methodologies used in this study, it was found that multiple 

regression presented a lower estimate of R2, indicating the 
existence of nonlinear associations between the explanato-
ry traits not considered in the model. Artificial intelligence 
and machine learning methodologies stood out for their 
ability to extract nonlinear information from model inputs 
(Parmly et al., 2019; Skawsang et al., 2019), as seen in Ta-
ble 1. Other authors have already highlighted the abilities of 
neural networks (Silva et al., 2014; Sant’Anna et al., 2015) 
and machine learning approaches (Sousa et al., 2020; Silva 
Junior et al., 2021) to better capture nonlinear relationships 
when compared to conventional methodologies.

The results obtained by different approaches show that 
there was a discrepancy between the maximum estimate 
of R2 for the predictive trait in the same environments  
(Table 1). This discrepancy in the estimate of R2 was also 
reported by (Silva Junior et al., 2023). It is noteworthy that 
the differences in results obtained in these analyses are in-
dicative that the environment influences the estimate of R2 

and, consequently, the choice of the best prediction model 
for the response trait.

The machine learning approach proved to be more effi-
cient than the other approaches (Table 1). There was a low 
estimate of the maximum R2 when using the random forest 
procedure in all environments. On the other hand, this 
procedure was superior to the multiple regression approach 
for the same environment, except the environment without 
fungicide (E3), where a value of 10.57% was obtained. 
The low estimate of the maximum R2 in the random forest 
procedure was also demonstrated for flood-irrigated rice 
Silva Junior et al. (2023) and simulated data with differ-

Table 1: Mean of the maximum estimate of the coefficient of determination for the training set, in four environments corresponding 
to the data set of experiments no and with fungicide in two agricultural years, to predict the grain yield in white oat (Avena sativa L.)

Approach Technique E1 E2 E3 E4 Average of performance

ML

BO 92.29 86.69 81.23 79.23 83.96

DT 85.37 76.39 61.78 64.65 70.52

BA 94.61 93.89 92.70 92.98 93.44

RF 64.91 55.09 10.57 24.48 39.79

AI

PMC-1 73.25 71.42 30.14 59.84 65.63

PMC-2 96.45 90.12 56.72 57.94 74.03

PMC-3 86.13 88.58 61.45 68.62 77.38

PMC-4 75.16 85.32 87.34 58.77 80.24

RBF 90.12 73.76 80.72 76.44 78.58

Conventional RM 61.02 46.07 20.67 32.72 39.40

AI: Artificial Intelligence; ML: Machine Learning; RM: Multiple Regression; PMC: Multilayer Perceptron; PMC: Multilayer Perceptron; PMC-1: 
Multilayer Perceptron with (10-11-1); PMC-2: Multilayer Perceptron (10-11-11-1); PMC-3: Multilayer Perceptron (10-11-11-11-1); PMC-4: Multilayer 
Perceptron (10-3-4-11-1); RBR: Radial Base Network; DT: Decision Tree; RF: Random Forest; BA: Bagging; BO: boosting. E: environments. E1 and 
E3: no fungicide; E2 and E4: with fungicide.
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ent heritability Silva Junior et al. (2021). This procedure 
involves randomly resampling the set of explanatory traits 
and building several decision trees that constitute a random 
forest, allowing the prediction and estimation of scores that 
will lead to the evaluation of the importance of predictors 
in a process repeated several times.

Regarding the environments and the bagging proce-
dure, the estimates of R2 were higher than 92.70%, making 
bagging the best approach for the analyzed datasets. High 
estimates (with reference to values of approximately 
80%) of R2 were also obtained using machine learning 
methodologies with boosting and bagging procedures on 
all prediction datasets (Table 1). Silva Junior et al. (2021) 
showed that the machine learning approaches with bagging 
and boosting procedures were more consistent in obtaining 
a higher overall mean estimate of R2 of predictive traits. 
The decision tree (DT) and random forest methodologies 
did not stand out from other machine learning procedures 
(Table 1).

Thus, machine learning is actually more efficient for 
selecting phenotypic traits because it can handle reduced 
or redundant information about phenotypic traits (Sousa 
et al., 2020). Costa et al. (2021) evaluated the importance 
of variables using bagging, random forest, boosting, deci-
sion tree, MLP and RBF and reported that MLP and RBF 
achieved better results. Silva Junior et al. (2023) verified 
that the computational intelligence and machine learning 
methodologies in prediction allowed the identification of 
explanatory phenotypic traits that should be prioritized and 
established as auxiliary traits for indirect selection.

Artificial intelligence approaches based on RBF yield-
ed estimates with R2 greater than 70% in all environments 
(Table 1). In this procedure, the maximum R2 was 90.12% 
(± 5.79), and the minimum was 73.75% (± 1.67), corre-
sponding to environments E1 and E2, respectively. Silva 
Júnior et al. (2023) found a maximum R2 ranging from 48% 
to 99% in different environments for flood-irrigated rice 
crops. For simulated data with different genetic structures, 
the maximum estimate of R2 ranges from 44% to 54% 
(Silva Junior et al., 2021), and (Sant’Anna et al., 2020) 
obtained consistent results of R2 for different genetic struc-
tures. Rosado et al. (2020) evaluated bean cultivars and 
obtained an estimate of R2 for the trait days to first flower 
and flowering days of 94.10% and 94.40%, respectively. 
This procedure has a good ability to handle complex inter-
actions compared to semiparametric and linear regression 
approaches (Sant’Anna et al., 2019 and 2020). Generally, 

the data used as training information is quickly learned 
in RBF, providing a unique solution compared to percep-
tron ANNs (Sant’Anna et al., 2020; González-Camacho  
et al., 2012).

Sant’Anna et al. (2020) applied the RBF in studies 
using simulated traits with 30% and 60% heredity for 
trait selection. The authors found that greater efficiency in 
the selection could be obtained using the RBF when the 
scenario involved epistatic interactions in the gene control 
of the studied traits. González-Camacho et al. (2012) ob-
served that it is possible to improve prediction in nonpara-
metric models when the selection includes markers that 
are not directly related to the traits of interest. Silva Junior  
et al. (2023) applied the RBF to predict grain yield, grain 
length-width ratio, and panicle length in flood-irrigated 
rice. The authors argued that the RBF has good perfor-
mance in predicting the importance of traits. Silva Junior  
et al. (2021) evaluated the importance of auxiliary traits of 
the main trait based on phenotypic information and previ-
ously known genetic structure information using the RBF 
and demonstrated the efficiency of this network to quantify 
the importance of traits.

Regarding MLP-1 (10-11-1), the highest estimate of 
the maximum R2 was observed in E1 (73.25%) and the 
lowest, with an estimate of 30.14%, was observed in E3. 
Both environments correspond to those without fungicide. 
In the procedures MLP-2 (10-11-11-1) and MLP-3 (10-
11-11-11-11-1), the highest estimates were observed in E1 
and E2 and the smallest in E3 and E4, respectively. MLP-3 
(10-11-11-11-1) and MLP-4 (10-3-4-11-1) have the same 
number of hidden layers. We observed lower estimates of 
the maximum R2 for the MLP-4 procedure, except in the E3 
environment. This shows that the number of neurons in the 
layer influences the estimation of the maximum R2. Silva 
Junior et al. (2021) argued that the number of neurons in-
fluences the estimation of the coefficient of determination.

The MLP network is widely used in the predictive pro-
cess (Silva Junior et al., 2021; Sousa et al., 2020) since the 
success of this network has already been demonstrated by 
several research groups, who have shown mathematically 
that, with only a single hidden layer, this network works 
very well with different numbers of neurons in the hidden 
layer (Sousa et al., 2020).

The efficiency of ANNs in prediction problems, given 
their ability to extract relevant information from large 
datasets and generalize relatively inaccurate information 
(Sant’Anna et al., 2020), was very well expressed in the 
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results obtained (Table 1). The same can be seen for meth-
odologies based on machine learning, which are capable 
of dealing with more reduced or redundant information in 
the input traits (Silva Junior et al., 2023). However, another 
study that is as important as prediction and that is often not 
carried out is the identification of more important predictive 
traits, which is an important factor in the decision-making 
process (Beucher et al., 2019). Thus, after the prediction 
analyses, analyses were carried out to quantify the impor-
tance of traits through artificial intelligence and machine 
learning methodologies to identify, among the set of explan-
atory traits, those that should be prioritized and identified as 
auxiliary traits in indirect responses to selection.

Linear relationship between predictor and grain 
yield traits in white oat

The greatest linear associations with GY may be a pre-
liminary indication that individual traits are important in its 
prediction. In multivariate prediction models, a predictor 
trait with high correlation with the response trait may lose 
its importance due to its redundancy, considering that, in 
the model, it may be represented by another association. 
Thus, in addition to quantifying the linear relationships 
between the predictor and response, it is important to quan-
tify and appreciate the linear relationships, expressed by 
linear correlation coefficients, between all predictors in the 

search for redundancies. In this work, these associations 
were represented in a correlation network that contains 
red and green lines that represent negative and positive 
correlations, respectively, and their width is proportional to 
the magnitude of the correlations (Figure 1). Regarding the 
phenotypic correlation network, the structure of correlated 
groups was obtained to predict GY. In this network, the 
similarity between the phenotypic traits and the phenotypic 
correlation patterns was highlighted.

The traits that presented groups with GY in E1 were 
MTG, HW and PH, which showed positive correlations but 
varied in magnitude, and LRS, which showed a negative 
correlation. To E2, the positively correlated traits consisted 
of PH and MTG and the negatively correlated traits consist-
ed of LS and DFM. For E3, which represents a case with no 
fungicide, the trait that was negatively correlated was SRS. 
Environment 4, the positively correlated group consisted of 
HW and DEF and the negative correlated group consisted 
of DEM (Figure 1).

Importance of trait in prediction using an artificial 
intelligence approach

Multilayer perceptron (MLP)

Estimates of the coefficient of determination of grain 
yield prediction with MLP attribute perturbation of the 

Figure 1: Phenotypic correlation network for the three distinct groups in four environments corresponding to without and with fungi-
cide in two agricultural years, to predict grain yield in white oat (Avena sativa L.). The line width is proportional to the strength of the 
correlation. E1 and E3; E2 and E4 represent the environments without and with fungicide, respectively. The orange color represents the 
grain characteristics; The yellow color represents the plant characteristics and the green disease severity. MTG = Thousand Grain Mass 
in grams; HW = Hectoliter Weight; DEM = Days between Emergency and Maturation; PH= percentage of lodging; GY = Grain yield 
in kilograms per hectare; DEF = Days from Emergence to Flowering; DFM= Days from Flowering to Maturation; PH= Plant Height; 
LRS= Leaf Rust Severity; SRS=Stem Rust Severity and LS= Leaf Spots.
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genotypic information are shown in Figure 2. These re-
sults show large discrepancies in R2 when comparing the 
environments with each other, which makes interpretation 
difficult. In environments E1 and E4, which correspond to 
environments without fungicide, the traits LP, PH, LRS 
were efficient in quantifying the response trait GY due 
to the reduction in the estimate of R2 as a function of the 
attribute perturbation of the phenotypic information.

Regardless of the number of neurons in the output layer 
and a single hidden layer, the most important traits were 
determined to predict GY (Figure 3). This result shows 
that these traits are important in predicting GY, as the 
perturbation of their values led to a considerable reduction 
in the quality of the fit. In the E2 environment, MTG was 
the most important trait in predicting GY.

There was a difference in the number of neurons in 
the output layer and hidden layer, indicating that the most 
important traits in E4 correspond to the fungicide environ-
ment. With only one neuron in the output layer and a single 
hidden layer, DEF and SRS were the most important traits 
due to the reduction in the estimate of R2. With two neurons 

in the middle layer and a single hidden layer, LRS and LS 
were the most important. With one neuron in the input layer 
and three hidden layers with 11 neurons in the intermediate 
layer and one neuron in the output layer, the traits that 
proved to be the most important were HW and SRS. On 
the other hand, with three hidden layers with 3, 4 and 11 
neurons in the intermediate layer, the important traits in 
predicting the GY were LRS, DEF and HW. Given the 
significant decreases in the estimated values of R2 observed 
when the variables were disturbed, Silva Junior et al. 2023 
reported that the most important traits were grain width and 
length in irrigated rice when using only one neuron in the 
output layer and a single hidden layer.

The importance of the traits was quantified by assigning 
destructuring to the genotypic information referring to each 
trait to observe the changes in the values of R2. It is im-
portant to note that reductions in the estimative of R2 after 
attribute disruption of the genotypic information referring 
to each trait are indicative that this trait is important in 
relation to the others for purposes of prediction with the 
already established network.

Figure 2: Estimates of the coefficient of determination of grain yield prediction in white oat (Avena sativa L.), using PMC attribut-
ing perturbation to genotypic information. MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight; DEM = Days between 
Emergency and Maturation; PH= percentage of lodging; GY = Grain yield in kilograms per hectare; DEF = Days from Emergence to 
Flowering; DFM= Days from Flowering to Maturation; PH= Plant Height; LRS= Leaf Rust Severity; SRS=Stem Rust Severity and 
LS= Leaf Spots; E: environments. E1 and E3: no fungicide; E2 and E4: with fungicide.
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Radial basis function (RBF)

The estimation of the importance of traits in white oat 
based on attribute disturbance of the information of an input 
trait after the RBF has been established is described in Fig-
ure 4. In this table, the relative importance of each input is 
estimated by the technique of destructuring the information 
of each explanatory trait. When using this strategy, drastic 
reductions in the values of R2 were observed for the most 
important traits and LRS for the predictive variable GY in 
the E1 and E4 environments. In practice, the intensity of this 
trait reduces genetic progress to increase grain yield. In the 
E2 environment, the trait that suffered the greatest reduction 
in R2 was DMF, with an estimate of 44.47%. This feature in-
creased grain yield, as more photoassimilates were produced 
and translocated to grains. However, late cycle cultivars tend 
to be more productive in relation to the initial cycle, and an 
increase in the amount of photoassimilates that are translo-
cated to the grains are obtained (Silva Junior et al., 2023).

The results show that the most important trait using the 
RBF was MTG in the E2, E3 and E4 environments, with 
estimates of 58.97%, 47.98% and 40.97%, respectively. In 

practice, MTG influences the grain yield in white oats, since 
the higher MTG is, the higher the GY. This justifies the 
results of this study for white oats in the prediction of GY.

The results obtained support the expectation about the 
RBF with respect to quantifying and revealing the impor-
tance of the traits using the strategy of causing disturbances 
from the permutations or fixation of the phenotypic values 
of the input traits. Our study demonstrated the ability of 
RNA to quantify the importance of phenotypic traits in 
white oats. Techniques that show the impact of interruption 
or disturbance in the information of a given input in the es-
timation of the coefficient of determination and partition of 
the connection weights of the ANN were presented. These 
techniques were effective in estimating the true importance 
of phenotypic traits. Therefore, there is a certain agreement 
between the results found by the two computational intelli-
gence methodologies of MLP networks and RBF networks.

Importance of traits in predicting by machine 
learning

Table 2 shows the means of the relative contributions 
of the explanatory traits for grain yield prediction by esti-

Figure 3: Estimates of the coefficient of determination in different topologies for predicting grain yield in white oat (Avena sativa 
L.), using PMC attributing disturbance to genotypic information. MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight;  
DEM = Days between Emergency and Maturation; PH= percentage of lodging; GY = Grain yield in kilograms per hectare; DEF = Days 
from Emergence to Flowering; DFM= Days from Flowering to Maturation; PH= Plant Height; LRS= Leaf Rust Severity; SRS=Stem 
Rust Severity and LS= Leaf Spots; Topology- TOP1: Multilayer Perceptron with (10-11-1); TOP2: Multilayer Perceptron (10-11-11-1); 
TOP3: Multilayer Perceptron (10-11-11-11-1); TOP4: Multilayer Perceptron (10-3-4-11-1).
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mating the minimum squared error increment percentage 
(SEIP), which is constructed by swapping the values of 
each trait in the dataset and comparing the results with the 
predictions using the original nonpermuted dataset of the 
traits. In this case, unlike the strategy used for the compu-
tational intelligence methodologies of the MLP and RBF 
networks, for which a lower value R2 indicated a greater 
importance of a given trait for the model, in the machine 
learning approach, the importance of the explanatory trait 
is related to the estimation of the average decrease in the 
precision of the model through the SEIP. Thus, the higher 
this estimate is, the greater the importance of the trait.

Based on Table 2, the traits that obtained the highest 
SEIP estimate in all machine learning methodologies in 
relation to environments without fungicides were LRS, 
HW, PH, and MTG in E1 and DEF, SRS, and LRS in E3. 
The trait that was more efficient in these environments was 
LRS. This justifies that this trait can be used in the indirect 
selection process when the target prediction variable is GY. 
For environments with fungicides, the most important traits 
were MTG, DFM, PH, and LRS in E2 and DEF, DFM, 
DEM, and LRS in E4. For the environment with fungicide, 

the traits DFM and LRS proved to be efficient in estimating 
the prediction of grain yield in white oat.

The random forest and bagging methodologies were 
coincident in quantifying the same explanatory traits. A 
similar result was reported by (Silva Junior et al., 2021). 
Regarding the boosting procedure, there were discrepancies 
in the results. On the other hand, this procedure was more 
consistent in terms of trait prediction. In this procedure, to 
estimate the importance of a trait using GY as the predictive 
target, the traits MTG, HW, PH, and LRS in E1 and MTG, 
DEF and LRS in E3 stood out in the environments without 
fungicides. For the fungicide environments, the important 
traits were MTG, DFM, PH, LRS, DEF, DFM, DEM, and 
LRS. When using the boosting procedure, the trait that 
stood out in all environments was LRS. This justifies that 
this trait can be used to predict GY in white oats.

The bagging technique involves generating several 
distinct training sets from the original dataset. The final 
predictions are calculated by averaging all generated pre-
dictions. This is useful for decision tree and artificial neural 
network techniques that are sensitive to small changes in 
training data (Song et al., 2021).

Figure 4: Coefficient estimates for determining grain yield prediction in white oat (Avena sativa L.) using the RBF attributing pertur-
bation to genotypic information. MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight; DEM = Days between Emergency 
and Maturation; PH= percentage of lodging; GY = Grain yield in kilograms per hectare; DEF = Days from Emergence to Flowering;  
DFM= Days from Flowering to Maturation; PH= Plant Height; LRS= Leaf Rust Severity; SRS=Stem Rust Severity and LS= Leaf 
Spots; E: environments. E1 and E3: no fungicide; E2 and E4: with fungicide.
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Importance of traits in reduced models for predic-
tions using the ML approach

Machine learning

The bagging biometric technique, which led to the best 
GY prediction results and provided information regarding 
the importance of predictors, is considered here. The 
average estimate of the relative contributions of the ex-
planatory traits for grain yield prediction in white oat using 
the bagging technique after eliminating auxiliary traits of 
smaller relative contributions in four environments with 
and without fungicide application is shown in Table 3. The 
choice of the bagging technique was based on the estimate 
of the coefficient of determination (Table 1), which was 
greater than 90%, and the elimination of auxiliary traits of 
the smallest relative contributions, as shown in Table 2.

The importance of predictors through the elimination 
of auxiliary traits of smaller relative contributions was 
quantified in several ways. First, only one of the predic-
tor traits (DFM, LP, PH, and LP) in E1, E2, E3, and E4, 
respectively, was eliminated. Then, the two traits with the 
least contribution were eliminated. Finally, the SRS and LS 
traits, which showed a lower estimate of the squared error 
increment percentage in all environments, were eliminated.

After eliminating auxiliary traits with smaller relative 
contributions, the maximum estimate of the coefficient of 
determination was similar when all auxiliary traits were 
used to predict GY (Tables 1 & 3).

The literature has highlighted machine learning 
techniques as efficient tools in quantifying the relative 

importance of traits in view of their simplicity, the nonuse 
of assumptions about the distribution of explanatory traits, 
and their robustness in relation to quantity, redundancy 
and environmental influences (Tan et al., 2014; Beucher  
et al., 2019; Silva Junior et al., 2021). Furthermore, such 
techniques do not require an inheritance specification model 
and can account for nonadditive effects without increasing 
the number of covariates in the model or the computation 
time (González-Recio et al., 2011). The bagging technique 
shows good predictive performance in practice; it works 
well for multidimensional problems and can be used with 
output from multiple classes, categorical predictors, and 
unbalanced problems (Gregorutti et al., 2017). Satisfactory 
results of trait selection using the bagging and random for-
est algorithms in the presence of correlated predictors were 
reported by (Ferreira et al., 2017). Discriminatory power, 
redundancy, precision, and complexity can influence the 
indices or statistics used to quantify the importance of 
auxiliary traits in predicting a main trait.

Genetic improvement for desired traits in different 
crops has been a time-consuming, laborious and expensive 
process. Breeders study generations of plants and identify 
and modify desired genetic traits as they assess how traits 
are expressed in offspring (Ferreira et al., 2017). The appli-
cation of computational intelligence and machine learning 
to identify ideal sets of observable traits (phenotypes) can 
allow informed decisions and yield highly relevant results 
in breeding programs. In addition, these methodologies 
can help predict auxiliary traits with the best performance 
under different agricultural management practices.

Table 2: Average estimate of the relative contributions of the explanatory traits for grain yield prediction in white oat using a machine 
learning approach, in four environments corresponding to without and with fungicide application

VA
E1 E2 E3 E4

BA RF BO BA RF BO BA RF BO BA RF BO

MTG 7.58 7.94 12.37 10.47 9.84 10.89 1.04 1.53 4.49 3.55 3.21 3.75

HW 10.11 10.68 15.29 2.19 2.23 6.57 2.2 1.75 3.51 3.83 4.44 3.93

DEF 3.29 2.42 7.55 6.85 5.79 6.73 3.58 3.5 4.60 11.46 11.49 9.18

DFM 1.59 2.21 2.97 16.94 16.84 12.25 0.8 -0.4 4.22 5.57 4.68 4.82

DEM 3.46 3.1 6.35 6.44 6.06 6.28 2.14 1.86 3.43 6.12 5.95 5.17

PH 10.74 10.3 9.65 10.01 8.29 9.32 -0.93 -0.24 2.72 0.8 -0.45 1.02

LP 2.83 2.49 5.94 1.36 1.08 2.79 3.04 3.04 2.96 0.36 -0.66 0.89

LRS 20.87 20.1 29.59 9.27 9.29 16.05 9.91 10.91 12.29 4.19 4.58 7.02

SRS 7.32 7.76 5.60 3.09 2.25 3.65 3.52 3.97 3.71 0.8 1.62 2.04

LS 3.11 3.67 4.69 3.62 2.91 3.74 3.22 2.95 3.30 3.99 3.49 3.59

MTG = Thousand Grain Mass in grams; HW = Hectoliter Weight; DEM = Days between Emergency and Maturation; PH= percentage of lodging;  
GY = Grain yield in kilograms per hectare; DEF = Days from Emergence to Flowering; DFM= Days from Flowering to Maturation; PH= Plant Height; 
LRS= Leaf Rust Severity; SRS=Stem Rust Severity and LS= Leaf Spots; FA: random forest; BA: Bagging; BO: Boosting; VA: auxiliary variable; E: 
environments. E1 and E3: no fungicide; E2 and E4: with fungicide.
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We compared different approaches to selecting or dis-
carding traits that have been recently proposed to identify 
relevant predictive variables within a regression problem. 
Furthermore, we included in our comparison a traditional 
method that aims to find a small subset of important traits 
with optimal predictive performance in the white oat crop. 
It is noteworthy that the traits used in this study are difficult 
to obtain, and their evaluation can be costly if there is a 
greater number of genotypes to be evaluated. In this con-
text, the study of the most important traits in the prediction 
becomes necessary since it is possible to reduce physical 
efforts, costs, use of labor, and time in the experimentation 
(Ferreira et al., 2017).

Therefore, our study presents the performance of some 
methodologies to assess the relative contributions of each 
variable through computational intelligence and machine 
learning in white oat cultures. Thus, the approach to esti-
mate the effect of explanatory traits on genetic improvement 
has successfully identified the true importance of each trait, 
including those that exhibit strong and weak correlations 
with the main trait, which in our case is grain yield.

Methodologies based on machine learning and computa-
tional intelligence do not depend on stochastic information 
and tend to be more efficient, while conventional method-
ologies depend on the normal distribution of phenotypic 
traits. Furthermore, in machine learning and computational 
intelligence methodologies, no assumptions about the 
model are made, and complex factors in predictive models 
can be captured. In machine learning, a priori knowledge 
of prediction is not needed if the data produce these effects, 
and no assumptions are made about the distribution of 
phenotypic values (Sousa et al., 2020). Machine learning 

algorithms have the advantage of modeling data nonlin-
early and nonparametrically (Osco et al., 2020). Unlike 
many traditional statistical methods, these algorithms are 
built with the advantage of handling noisy, complex, and 
heterogeneous data (Osco et al., 2020). Researchers now 
have the ability to identify the individual and interactive 
contributions of predictor traits to the white oat crop using 
artificial intelligence and machine learning.

CONCLUSION
Computational intelligence and machine learning meth-

odologies were used to quantify the importance of explan-
atory traits in predicting white oat grain yield. The model 
with only one hidden layer was efficient in determining 
the relative importance of variables in white oat. The traits 
indicated to assist in decision-making are plant height, leaf 
rust severity, and lodging percentage. The R2 ranged from 
30.14%-96.45% and 10.57%-94.61% for computational 
intelligence and machine learning, respectively. 

A high estimate of the coefficient of determination was 
obtained using the bagging technique, which was higher 
than that of the other approaches. Simpler models, exclud-
ing predictors, are as efficient as more complex models, 
indicating that quantifying the importance of predictors 
is important to minimize costs, ensuring the same level of 
efficiency as that of the predictive models.
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