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ABSTRACT

The use of unmanned aerial vehicles imagery has become 
an established practice in high-throughput phenotyping 
for predicting the yield potential of maize (Zea mays L.), 
although applying these technologies presents challenges 
due to regional specificities. This study aimed to assess the 
effectiveness of RGB (red, green, and blue) aerial imagery 
for the early identification of yield maize genotypes during 
the vegetative stage. Four genotypes were evaluated using 
a randomized block design with four replications. The 
experiment involved seven flights at two heights. Twen-
ty-nine RGB vegetation indices were derived from image 
processing to discriminate genotypes based on plot-level 
grain yield. Nested models were fitted to predict temporal 
Best Linear Unbiased Predictions (BLUPs), with the most 
repeatable indices selected for analysis. Significant differ-
ences were observed among genotypes and plant spacing. 
The optimal flight timing was identified as 43 days after 
planting at a height of 80 meters. The indices MRCC, 
RmB, and RCC exhibited the highest repeatability and 
showed strong correlations with grain yield, demonstrat-
ing potential for RGB-based phenotyping studies. These 
findings highlight the utility of RGB imagery as a tool 
for early maize genotype selection, enhancing efficiency 
and accuracy in breeding programs and contributing to 
advancements in precision agriculture.
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ing, unmanned aerial vehicles, Zea mays L.
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INTRODUCTION
Maize (Zea mays L.) is one of the most widely cultivat-

ed cereals worldwide, playing a crucial role in global food 
security. Likely originating from Central America, this 
species exhibits remarkable versatility, contributing signifi-
cantly to human and animal nutrition while also serving as 
a raw material for various industrial applications.(1,2) These 
factors enhance its economic value and drive continuous 
interest in its genetic improvement.

The increasing demand for higher productivity and 
climate resilience in maize production has intensified the 
need for precise and efficient genotype selection. In this 
context, high-throughput phenotyping (HTP) has emerged 
as a viable approach, facilitating applications ranging 
from plant localization and pest/disease detection to the 
identification of high-yielding genotypes in plant breeding 
programs.(3) Traditional phenotyping methods, while foun-
dational, often present limitations in terms of efficiency, 
labor intensity, and accuracy, underscoring the necessity 
for advanced phenotyping technologies.

Unmanned Aerial Vehicles (UAVs) have gained promi-
nence as a promising technological alternative for real-time, 
non-destructive crop monitoring. These platforms enable 
large-scale data acquisition across different growth stages, 
from early vegetative development to physiological grain 
maturity, offering valuable insights into plant performance 
under diverse environmental conditions.(4) UAV-based 
imaging techniques vegetation indices (VIs) derived from 
RGB, multispectral, and hyperspectral sensors to assess 
key agronomic traits, such as biomass accumulation, cano-
py architecture, and stress responses, which influence crop 
yield potential.(5,6)

Despite the potential of UAV-based phenotyping, sev-
eral challenges hinder the standardization and scalability 
of these methodologies. Environmental variability, differ-
ences in UAV models, sensor types, and variations in flight 
parameters -such as altitude and image resolution- pose 
significant challenges to data consistency and comparabil-
ity.(4,7,8) Furthermore, the effectiveness of these protocols is 
contingent upon optimized flight path planning, controlled 
image acquisition conditions, and robust data processing 
techniques to ensure reliable and reproducible results.

Most protocols described in the literature rely on mul-
tispectral or hyperspectral sensors, which, although highly 
accurate, are costly and often beyond the reach of many 
breeding programs in developing regions.(9-11) In contrast, 

RGB cameras represent a more affordable and readily 
accessible alternative. However, a significant research gap 
persists regarding the use of RGB imaging protocols for 
the early selection of maize genotypes before physiological 
maturity, particularly under semi-arid conditions in Brazil.

The development of a standardized RGB protocol 
adapted to these conditions represents a methodological 
innovation, since most previous studies have concentrated 
on multispectral and hyperspectral approaches, leaving 
cost-effective RGB applications underexplored in this con-
text. Addressing this gap, the present study aims to estab-
lish an aerial phenotyping protocol utilizing RGB imagery 
to assess the yield potential of maize genotypes at early 
developmental stages, thereby enhancing the efficiency of 
selection processes in breeding programs.

MATERIALS AND METHODS

Experimental design and grain yield phenotyping

The field experiment was carried out in Nossa Senhora 
da Glória, Sergipe, Brazil (10°12'50.6" S, 37°19'03.2" W; 
with an altitude of 210 m), during the 2021 growing sea-
son. The predominant climate in the region is classified as 
type "tr**neb,(12)" with annual rainfall ranging from 506 to 
1,301 mm. The soil at the experimental site is classified as 
an Argisol. Sowing was performed on May 22, 2021, and 
harvesting on November 13, 2021.

The experimental design employed was a Randomized 
Complete Block Design (RCBD) arranged in a strip plot 
scheme. The experiment was conducted with three differ-
ent row spacings (0.60 m, 0.70 m, and 0.80 m) assigned to 
the strips, while the four maize genotypes were arranged 
within each strip, distributed across four replications.

Each plot consisted of two rows, each 8 m in length, 
with 0.20 m spacing between plants within rows, totaling 
80 plants per plot, with one seed planted per hill. This 
arrangement corresponds to approximate plant densities of 
83,333, 71,428, and 62,500 plants ha⁻¹ for row spacings 
of 0.60 m, 0.70 m, and 0.80 m, respectively. The maize 
genotypes tested are described in Table 1.

UAV model and image acquisition

A drone model Mavic 2 Pro was used to conduct flights 
at heights of 60 and 80 meters, capturing RGB images 
(20 megapixels) with an 80% lateral and frontal overlap. 
Drone Deploy software (https://www.dronedeploy.com/)(13) 
was employed to plan and execute the flights. Five ground 

https://www.dronedeploy.com/
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control points (GCPs) were established at the vertices of 
the experimental area. Using GNSS RTK (FOIF model 
A60), coordinates were collected to prevent errors in the 
orthomosaics, which were georeferenced and generated 
after processing.

The flights were conducted between 11:00 AM and 1:00 
PM, exclusively on sunny days, to minimize the influence 
of adverse weather conditions, such as cloud and precipi-
tation, thereby ensuring the quality and consistency of the 
acquired images. A total of seven flights were performed 
at different heights on various dates (Figure 1), covering 
multiple phenological stages of the crop.

Image data processing

For image processing, the first step involved data 

mining of the images. This stage is crucial for the success 
of all subsequent analyses, as it encompasses image file 
segmentation, correction of potential errors, cropping of 
undesired areas, and other factors that influence the final 
purity of the image data.(6)

Therefore, to obtain the Orthomosaics, a flight plan was 
executed, delineating the experimental area to be surveyed 
during the crop season. Additionally, productivity data was 
collected through manual phenotyping (Figure 2-A). Sub-
sequently, using the WebODM interface of the OpenDrone-
Map (ODM)(14) software on a 64-bit Windows plataform, 
image calibration took place to correct displacement errors 
utilizing control points, aiming to enhance the precision of 
the orthomosaic (Figure 2-B).

Table 1. Characterization of the genotypes used in the experiment implemented on 22/05/2021

Genotypes Genetic class Grain type Technology Company

1 GNZ16(EX3W07LVIP3) SH Semi-flint/ Orange Vip3 GENEZE

2 GNZ59 SH Semi-hard/ Orange - GENEZE

3 GNZ7720VIP3 SH Semi-flint/ Orange Vip3 GENEZE

4 AG8780 SH hard VTPRO3 AGROCERES

SH: Single-cross hybrids, VTPRO3: Vector triple protection 3, Vip3: Viptera 3. Source: Authors (2022)

Figure 1. Image acquisition scheme using the Mavic 2 Pro drone at heights of 60 m and 80 m during different phenological stages of 

the crop. 1PS: Phenological Stage, 2DAP: Days after planting. Source: Authors (2022).
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Image alignment was conducted with medium accu-
racy, employing 40,302 and 43,484 tie points, while the 
adaptive camera model adjustment was disabled. The mean 
reprojection error ranged from 1.35 to 1.47 pixels at flight 
heights of 60 m and 80 m, respectively. The adopted co-
ordinate reference system was WGS 84 / UTM Zone 24S. 
The survey at 60 m height generated a Ground Sampling 
Distance (GSD) of 1.45 cm/pixel, whereas the 80 m flight 
resulted in a GSD of 1.94 cm/pixel. These resolutions were 
adequate for intra-plot variability analyses and for the 
extraction of spectral indices.

Finally, in the QGIS software, adjustments were made 
to the shapefile layer (shp) of the orthomosaic, including 
geometric correction, calibration, and border trimming, in 
order to improve spatial accuracy and image quality. These 
procedures facilitated the subsequent extraction of RGB 
vegetation indices in the RStudio software(15) (Figure 2-C).

A total of 29 vegetation indices (VIs) were extracted 
from the orthomosaics (Table 2). The selection of vegeta-
tion indices for the temporal BLUP analysis was grounded 
in their well-documented ability to detect changes in can-
opy structure, green vegetation, and biomass accumulation 
throughout the crop growth cycle.

To accomplish this, initially, a shapefile was created 
using the R function R/UAStools::plotshpcreate(). In the 
R software, polygons were generated around each plot for 
each genotype and row spacing based on the field map/
sketch.

In the R software, the UAStools::plotshpcreate() func-
tion was used with the "buffer" argument set as "rowbuf = 
0.1" and "rangebuf = 0.5" to delineate the plots, avoiding 
overlap of plants from adjacent plots. Since different spac-
ings were used, the "rowespc = 0.8" function was employed, 
encompassing the widest row spacing used, facilitating the 
overlap of polygons in the plots. The shapefiles underwent 
preprocessing in the QGIS software(34) to adjust the poly-
gons in each plot, minimizing errors in vegetation index 
extraction. At the end of the processing, 14 orthomosaics 
with adjusted shapefiles were obtained, seven for each 
flight altitude.

The FIELDimageR package was utilized in the R 
software for extracting the 29 VIs from each plot.(35) To 
achieve this, the RFIELDImageR::fieldMask function was 
used to eliminate soil color from the RGB images, with the 
HUE vegetation index serving this purpose. The fieldIndex 
function in R/FIELDImageR was employed to extract the 

Figure 2. Workflow of the analyses conducted to obtain the 29 vegetation indices. Source: Authors (2022).
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29 vegetation indices for each flight date. The VIs BI, GLI, 
NGRDI, VARI, and BGI were extracted using the "index=" 
argument, while the remaining indices were extracted 
through formulas using the "myIndex=" argument.

Statistical analysis for image phenotyping data

Conventional statistical analyses were conducted for 
the grain yield variable. Grain yield measurements were 
taken after harvesting the ears in each plot, weighed using 
a scale, and adjusted to 13% moisture content. An analysis 
of variance (equation 1) and a mean comparison test, spe-
cifically Tukey's test, were performed.

yijk = μ + bj + ek + pi + epjk + error(a)ik+

error(b)jk + error(c)ijk
(1)

In this model, yijk refers to the individual observation for 
each pedigree. The term μ denotes the overall mean of the 
response variable, expressed in kg/ha. The factor bj rep-
resents the effect of the jth block, while ek refers to the effect 
of the kth plant spacing. The pedigree (genotype) effect is 
represented by pi, and the interaction between plant spacing 
and pedigree is expressed by $epjk, which reflects how dif-
ferent genotypes respond to varying spacings. Additionally, 
three error terms are included: error(a), representing the in-

Table 2. RGB Vegetation Indices applied in the phenotyping analyses

Vegetation indices Equation1

Normalized green red difference index

(NGRDI)(16)
(G-R)/G+R)

Green leaf index (GLI)(17) (2*G-R-B)/(2*G+R+B)

Visible atmospherically resistant index

(VARI)(18)
(G-R)/(G+R-B)

Spectral slope saturation index (SI)(19) (R-B)/(R+B)

Blue green pigment index (BGI)(20) B/G

Brightness index (BI)(21)

Excess red (ExR)(22) ((1.4*R)-

Excess green minus excess red index (ExGR)(23) ((3*G)-(2.4*R)-B)

Excess green (ExG)(24) ((2*G)-R-B)

Normalized blue (BCC)(24) B/(R+G+B)

Color index of vegetation extraction (CIVE)(25) ((0.441*R) (0.811*G)+(0.385*B)+18.78745)

Combined indices 1 (COM1)(26) ExG + CIVE + ExGR+ VEG

Combined indices 2 (COM2)(27) 0.36*ExG + 0.47*CIVE + 0.17*VEG

Green minus red (GmR)(24) G-R

Green minus blue (GmB)(24) G-B

Green blue simple ratio index (GdB)(24) G/B

Green red simple ratio index (GdR)(24) G/R

Green chromatic index (GCC)(24) (G/(R+G+B))

Modified excess green index (MExG)(28) ((1.262*G)-(0.884*R)-(0.311*B))

Modified green red vegetation index (MGVRI)(29) ((G^2)-(R^2))/((G^2)+(R^2))

Modified red chromatic coordinate index (MRCC)(4) R^3/(R+G+B)

Normalized difference index (NDI)(23) (G-R)/ (G+R)

Normalized difference red blue index (NDRBI)(30) (R-B)/(R+B)

Normalized green-blue difference index (NGBDI)(31) (GB)/(G + B)

Red minus blue index (RmB)(24) R-B

Red blue simple ratio index (RdB)(24) R/B

Red chromatic coordinate index (RCC)(24) (R/(R+G+B)

Red green blue index (RGBVI)(29) (((G^2)-(R*B))/((G^2)+(R*B)))

Triangular greenery index (TGI)(32) (G-((0.39*R)-(0.69*B)))

Vegetative (VEG)(33) G/R^0.667*B^0.334

1 R= Red band; G= Green band; B= Blue band.
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teraction between block and spacing; error(b), referring to 
the interaction between block and genotype; and error(c), 
representing the residual experimental error not explained 
by the previous components.

The statistical analyses of the temporally extracted 
vegetation indices, here referred to as Temporal Vegetative 
Indices (TVIs), as suggested by Adak et al. (2021),(4) and 
grain yield (GY) along with their graphical visualizations 
were conducted in the R software. To select the optimal 
post-planting flight date (PPD) for 60m and 80m altitudes 
and the most representative TVIs at each flight altitude, the 
repeatability index was employed.

For this purpose, nested mixed models were fitted to 
extract the BLUPs (Best Linear Unbiased Predictor) for 
each vegetation index for each pedigree. Considering them 
as a time series, they were termed as Temporal BLUPs 
(TBLUPs). The lmer4::lmer() function(36) was employed 
for this purpose.

The first fitted model is represented by equation 2, 
where the extraction of BLUPs for each vegetation index of 
each pedigree on each flight day was considered separately 
at 60m and 80m altitudes.

Yijkl = μ + Pedigreei + Spacingk + Replicationj+

Rangel + errorijkl
(2)

Here, Y represents the individual observation of the vege-
tation index for each genotype. The term μ stands for the 
overall mean. Pedigree corresponds to the random effect 
of the ith genotype. The plant spacing (Spacing), replication 
(Replication), and field strip (Range) are all treated as ran-
dom effects, each assumed to follow a normal distribution 
with mean zero and a specific variance. The residual term 
(error) captures the unexplained variation between the 
factors, also normally distributed.

The repeatability assessment of the vegetation indices 
was used as an indicator of the level of reproducibility as 
accuracy in choosing genotypes using sensors attached to 
Unmanned Aerial Vehicles (UAV). Therefore, repeatability 
values above 65% were considered high, as observed im 
previous studies by Herzig et al. (2021)(37) and Anderson et 
al. (2019),(38) which focused on evaluating the productivity 
of barley and corn, respectively.

The repeatability was calculated for each vegetation 
index, considering the variance explained by Pedigree and 
error, as represented by equation 3.

R =
σ2Pedigree(i)

σ2Pedigree(i) +
σ2error(ijkl)

j(jkl)

(3)

Where σ2Pedigree represents the variance attributed to the ith 
genotype, and σ

2
error  corresponds to the residual variance, 

considering spacing, replication, and range. The term j re-
fers to the number of replications.

In this study, the parameter estimated in Equation 3 was 
interpreted as repeatability (r), reflecting the consistency 
of vegetation index measurements across different replica-
tions and environments.

Although the model did not include the permanent 
environmental variance component typically incorporated 
in the formal definition of repeatability,(4) this component 
could not be estimated. In this context, the repeatability 
parameter is conceptually employed to represent the re-
liability and temporal stability of spectral measurements. 
High repeatability values (above 65%) indicate strong 
consistency in phenotyping and are essential for reliable 
genotype selection using UAV-based imaging data.

The second fitted model is represented by equation 4, 
where the extraction of Temporal BLUPs (TBLUPs) for 
the Temporal Vegetative Indices (TVIs) was considered for 
each pedigree at both 60 m and 80 m altitudes.

Yijkl =μ + DAPi + [Pedigree (DAP)]ij + [Spacing (DAP)]im+

[Range (DAP)]ik + [Replication (DAP)]il + errorijkl
(4)

The response variable Y corresponds to the vegetation 
index value for a given genotype at a specific time. The 
overall mean is denoted by µ and DAP is a fixed effect 
representing the flight date. All other terms, including 
genotype [Pedigree(DAP)], spacing [Spacing(DAP)], 
range [Range(DAP)], and replication [Replication( DAP)], 
are considered random effects nested within time, each 
assumed to follow a normal distribution. The residual error 
term captures the remaining unexplained variability.

The repeatability was calculated for each Temporal 
Vegetative Index (TVI), considering the variance explained 
by [Pedigree (DAP)]ij and errorijkml, as represented by 
equation 5.

Rt =
σ2Pedigree(i,t)

σ2Pedigree(i,t) +
σ2error(ijklt)

j(jkl)

(5)

In this expression, σ2Pedigree  denotes the variance explained 
by the ith genotype over time t, while σ

2
error  represents the 
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residual variance associated with spacing, replication, 
range, and time. The term j corresponds to the number of 
replications. This measure evaluates the consistency of 
genotype performance over time and supports the identifi-
cation of stable and high-performing genotypes across 
multiple flight dates.

Yield tracking with BLUPs over time

After selecting the VIs and TVIs that explained the 
highest proportion of variance among genotypes at differ-
ent spacings estimated by repeatability, graphical repre-
sentation was carried out to select the most representative 
flight altitude and track the temporal behavior of genotypes 
during the vegetative phase using the selected TVIs.

To track the productive performance of genotypes over 
time, the behavioral pattern of the selected TVIs was deter-
mined at each flight altitude. The BLUP of grain yield was 
used as a marker to distinguish genotypes above and below 
the average grain yield. For this purpose, the ggplot2::gg-
plot function(39) was employed. Next, Pearson’s correlation 
analysis was applied to the BLUPs of grain yield and the 
selected vegetation indices to evaluate the strength and 
direction of their relationships. This analysis aimed to 
determine how effectively the spectral indices represented 
variations in yield.

RESULTS
Significant differences were observed among geno-

types, indicating phenotypic variability grain yield, with 
coefficients of variation were within the acceptable range 
for the crop (Table 3). The genotypes GNZ59 and AG8780 
exhibited the highest grain yields, with 5265.49 and 
5275.95 kg/ha, respectively (Figure 3). These results are 
promising for maintaining genotypes with desirable traits 
in breeding programs, for use in future crosses.

It was observed that at 43 DAP, during the crop’s veg-
etative stage, the vegetation indices exhibited significant 
repeatability for both tested flight heights (60m and 80m), 
as shown in Figure 4. Furthermore, in later growth stages, 
a decrease in repeatability was detected, suggesting that 
late-stage assessments using these indices are not effective 
for early selection.

Following the identification of the optimal period, 
the selection of VIs was conducted. For the flight at 60m 
height, the indices MRCC, RmB, and RCC exhibited the 
highest repeatability values, with 67.81%, 65.83%, and 
65.39% at 43 DAP, respectively (Figure 5).

For the flight at 80 m height, the indices MRCC, 
Green, BI, Red, RmB, TGI, RCC, VARI, ExR, NDRBI, 
and MGVRI showed the highest repeatability values, 
with 73.91%, 73.69%, 73.25%, 73.17%, 72.37%, 70.33%, 
70.23%, 68.04%, 67.38%, 67.01%, and 65.01% at 43 DAP, 
respectively, as illustrated in Figure 5. These results indi-
cate that the mentioned indices are reliable for assessing 
genotype productivity during the vegetative stage.

The BLUPs obtained from vegetation indices selected 
based on the highest repeatability (as shown in Figure 5) 
demonstrated effectiveness in differentiating genotypes 
regarding grain yield at the determined flight point, at 43 
DA (Figures 6 and 7).

Figure 3. Tukey test for the grain yield of the genotypes evaluat-
ed. Bars with the same color and letters do not differ significantly.

Table 3. Summary of the analysis of variance for grain yield of 
the evaluated genotypes

MS

SV
DF

GY

Block 3 162843

Spacing 2 3150949*

Error a 6 388435

Genotypes 3 3647216**

Error b 9 275649

Spacing x Genotypes 6 155818

Error c 18 100314

Residue 47

Mean 5116.35

CV1 (%) 13.00

CV2 (%) 10.95

CV3 (%) 6.60

DF = Degrees of freedom; SV = Source of variation; CV = coefficient of 
variation; **, * Significance level at 1% and 5% probability by the F-test 
respectively; MS = Mean square, GY = Grain yield (kg/ha).
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It is important to highlight in Figure 6 the behavior 
of the MRCC, RmB and RCC vegetation indices, which 
exhibited a relevant pattern for the research. The MRCC 
index showed the highest predicted values for the most 

productive genotypes, while the RmB and RCC indices 
displayed a consistent and similar behavior for high-yield-
ing genotypes, indicating their potential for early detection 
of high-productivity genotypes.

Figure 5. Identification of RGB Vegetation Indices with high repeatability at 60 and 80 meters height at 43 DAP. FH= Flight Height.

Figure 4. Identification of the best date of flight after planting using the repeatability of the RGB vegetation indices for the two flight 
heights evaluated.
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Pearson's correlation analysis showed that the selected 
vegetation indices were strongly associated with grain 
yield (Tables 4 and 5).

At a flight height of 60 m, the MRCC, RmB, and RCC 
indices exhibited strong positive correlations with yield 
(r = 0.93–0.96), demonstrating their potential as reliable 

predictors of yield. Similarly, at 80 m, strong correlations 
were also observed (r = 0.88–0.99), confirming the 
consistency of these indices at different flight heights. 
These results highlight the effectiveness of the selected 
indices in representing the productive performance of the 
genotypes.

Figure 6. Line chart with temporal measurement with flight height at 60 meters, classified by grain yield per hectare.

Figure 7. Line chart with temporal measurement with flight height at 80 meters, classified by grain yield per hectare.
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DISCUSSION
The findings of this study provide valuable insights into 

the early detection of maize genotypes with productive po-
tential using RGB aerial images captured by unmanned ae-
rial vehicles (UAVs). The phenotypic variability observed 
among the genotypes, reflected in significant differences in 
grain yield, highlights the effectiveness of high-throughput 
phenotyping (HTP) in enhancing selection processes with-
in breeding programs.

Explanation of the most significant findings

The analysis of variance confirmed the phenotypic 
variability in grain yield among the evaluated genotypes, 
demonstrating excellent performance in the coefficient of 
variation, a parameter crucial for estimating the mean with 
reliability, as discussed by Gurgel et al. (2013).(40)

The high reproducibility of the MRCC, RmB and RCC 
vegetation indices underscores their accuracy in distin-
guishing maize genotypes during the vegetative phase. 
These indices are strongly associated with physiological 
attributes such as chlorophyll content, leaf area index, 
and photosynthetic efficiency, which are fundamental 
for biomass accumulation and, consequently, grain yield 
potential.(4,24)

The selection of the imaging period at 43 days after 
planting (DAP) aligns with key phenological stages (V6 to 
V8), characterized by rapid vegetative growth and canopy 
development.(41,42) This stage is crucial for establishing the 

potential number of grain rows, directly impacting yield 
outcomes.

The analyses of BLUPs derived from selected Vis 
proved to be satisfactory, demonstrating the ability to dis-
cern differences in the average productivity of genotypes at 
an early stage. This validation, as observed by Anderson et 
al. (2019),(38) highlights the potential of using images and 
Vis, even during the juvenile stage, for genotype selection.

These findings reinforce the reliability of employing 
aerial image phenotyping protocols for selecting maize 
genotypes in the juvenile stage using RGB images before 
the physiological maturity of the grain. These results have 
significant implications for maize breeding programs, 
expediting the prediction process of productive genotypes 
and ultimately reducing the time required to obtain these 
results.

Comparison with other studies

Our conclusions align with research by Anderson et al. 
(2019)(38) and Herzig et al. (2021),(37) which also confirmed 
the effectiveness of RGB indices in predicting the yield 
potential of maize and barley, respectively, achieving 
significant repeatability.

Resende et al. (2024)(43) demonstrated that RGB-derived 
indices, such as GLI and ExG, are strongly correlated with 
yield-related traits. In addition, the V5 and VT phenolog-
ical stages were identified as the most appropriate periods 
for data collection. These results are in agreement with 
our findings, where indices obtained during early develop-
mental stages exhibited greater discriminatory power. This 
reinforces the potential of RGB imagery for monitoring 
different phases of the crop cycle.

However, it is essential to consider the impact of en-
vironmental variability on the choice and applicability of 
vegetation indices. Thus, evaluating whether the study site 
accurately represents local growing conditions is crucial to 
ensure that the results are consistent with real production 
scenarios. The precision of the estimates relies not only 
on the selection of indices but also on the quality of the 
acquired images. In this context, flight altitude is a key 
parameter, as it directly influences spatial resolution.

In contrast to Maresma et al. (2020),(44) who reported 
optimal UAV flight heights around 100 meters, our study 
identified 80 meters as the most effective height for maize 
yield assessment.

Moreover, although authors such as Guo et al. (2023),(45) 
Abdulridha et al. (2023)(46) and Sahoo et al. (2024)(47) have 

Table 5. Pearson correlation matrix between grain yield BLUPs 
and the selected vegetation indices at 43 DAP and a flight height 
of 80 m

PG RCC MRCC RmB

1 0.88 0.99 0.89

0.88 1 0.88 0.91

0.99 0.88 1 0.84

0.89 0.91 0.84 1

Table 4. Pearson correlation matrix between grain yield BLUPs 
and the selected vegetation indices at 43 DAP and a flight height 
of 60 m

PG RCC MRCC RmB

1 0.93 0.93 0.96

0.93 1 0.83 0.94

0.93 0.83 1 0.78

0.96 0.94 0.78 1
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highlighted the superiority of hyperspectral and multi-
spectral sensors, our findings suggest that RGB images, 
when processed with robust statistical models, can achieve 
equivalent predictive accuracy at a lower cost, particularly 
for early-stage phenotyping.

Practical implications and future directions

The identification of highly repeatable VIs such as 
MRCC, RmB, and RCC is particularly relevant for breed-
ing programs, since their stability across flight dates and 
environments ensures greater reliability in early genotype 
selection.

This consistency allows breeders to make more 
confident decisions regarding genotype advancement at 
juvenile stages, thereby reducing the number of field trials. 
Furthermore, the operational simplicity and lower costs of 
RGB imagery compared to multispectral or hyperspectral 
approaches enhance its feasibility for large-scale use, espe-
cially in breeding programs with limited resources.

Nonetheless, it is important to recognize that the robust-
ness of RGB indices does not necessarily eliminate the val-
ue of multispectral and hyperspectral sensors. In situations 
requiring fine discrimination of stress responses or nutrient 
status, broader spectral data may outperform RGB.

Future research should expand the scope to include a 
broader range of genotypes and environmental conditions 
to confirm the reliability of the identified indices. Compar-
ative studies incorporating multispectral and hyperspectral 
data could further clarify the relative benefits of each image 
type.

CONCLUSION
This research highlights the effectiveness of RGB-

based vegetation indices, particularly MRCC, RmB and 
RCC, in distinguishing early-stage maize genotypes. The 
practical guideline for UAV-based phenotyping protocols 
was identified at 43 DAP, with a flight height of 80 meters. 
Despite some limitations, these findings contribute to ad-
vancing high-throughput phenotyping methods, supporting 
more efficient breeding strategies and precision agriculture 
practices.
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