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ABSTRACT

The use of unmanned aerial vehicles imagery has become
an established practice in high-throughput phenotyping
for predicting the yield potential of maize (Zea mays L.),
although applying these technologies presents challenges
due to regional specificities. This study aimed to assess the
effectiveness of RGB (red, green, and blue) aerial imagery
for the early identification of yield maize genotypes during
the vegetative stage. Four genotypes were evaluated using
a randomized block design with four replications. The
experiment involved seven flights at two heights. Twen-
ty-nine RGB vegetation indices were derived from image
processing to discriminate genotypes based on plot-level
grain yield. Nested models were fitted to predict temporal
Best Linear Unbiased Predictions (BLUPs), with the most
repeatable indices selected for analysis. Significant differ-
ences were observed among genotypes and plant spacing.
The optimal flight timing was identified as 43 days after
planting at a height of 80 meters. The indices MRCC,
RmB, and RCC exhibited the highest repeatability and
showed strong correlations with grain yield, demonstrat-
ing potential for RGB-based phenotyping studies. These
findings highlight the utility of RGB imagery as a tool
for early maize genotype selection, enhancing efficiency
and accuracy in breeding programs and contributing to

advancements in precision agriculture.
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INTRODUCTION

Maize (Zea mays L.) is one of the most widely cultivat-
ed cereals worldwide, playing a crucial role in global food
security. Likely originating from Central America, this
species exhibits remarkable versatility, contributing signifi-
cantly to human and animal nutrition while also serving as
a raw material for various industrial applications."-? These
factors enhance its economic value and drive continuous
interest in its genetic improvement.

The increasing demand for higher productivity and
climate resilience in maize production has intensified the
need for precise and efficient genotype selection. In this
context, high-throughput phenotyping (HTP) has emerged
as a viable approach, facilitating applications ranging
from plant localization and pest/disease detection to the
identification of high-yielding genotypes in plant breeding
programs.® Traditional phenotyping methods, while foun-
dational, often present limitations in terms of efficiency,
labor intensity, and accuracy, underscoring the necessity
for advanced phenotyping technologies.

Unmanned Aerial Vehicles (UAVs) have gained promi-
nence as a promising technological alternative for real-time,
non-destructive crop monitoring. These platforms enable
large-scale data acquisition across different growth stages,
from early vegetative development to physiological grain
maturity, offering valuable insights into plant performance
under diverse environmental conditions.” UAV-based
imaging techniques vegetation indices (VIs) derived from
RGB, multispectral, and hyperspectral sensors to assess
key agronomic traits, such as biomass accumulation, cano-
py architecture, and stress responses, which influence crop
yield potential.*®

Despite the potential of UAV-based phenotyping, sev-
eral challenges hinder the standardization and scalability
of these methodologies. Environmental variability, differ-
ences in UAV models, sensor types, and variations in flight
parameters -such as altitude and image resolution- pose
significant challenges to data consistency and comparabil-
ity.“7® Furthermore, the effectiveness of these protocols is
contingent upon optimized flight path planning, controlled
image acquisition conditions, and robust data processing
techniques to ensure reliable and reproducible results.

Most protocols described in the literature rely on mul-
tispectral or hyperspectral sensors, which, although highly
accurate, are costly and often beyond the reach of many

breeding programs in developing regions.®'" In contrast,

RGB cameras represent a more affordable and readily
accessible alternative. However, a significant research gap
persists regarding the use of RGB imaging protocols for
the early selection of maize genotypes before physiological
maturity, particularly under semi-arid conditions in Brazil.

The development of a standardized RGB protocol
adapted to these conditions represents a methodological
innovation, since most previous studies have concentrated
on multispectral and hyperspectral approaches, leaving
cost-effective RGB applications underexplored in this con-
text. Addressing this gap, the present study aims to estab-
lish an aerial phenotyping protocol utilizing RGB imagery
to assess the yield potential of maize genotypes at early
developmental stages, thereby enhancing the efficiency of

selection processes in breeding programs.
MATERIALS AND METHODS

Experimental design and grain yield phenotyping

The field experiment was carried out in Nossa Senhora
da Gléria, Sergipe, Brazil (10°12'50.6" S, 37°19'03.2" W;
with an altitude of 210 m), during the 2021 growing sea-
son. The predominant climate in the region is classified as
type "tr**neb,!?" with annual rainfall ranging from 506 to
1,301 mm. The soil at the experimental site is classified as
an Argisol. Sowing was performed on May 22, 2021, and
harvesting on November 13, 2021.

The experimental design employed was a Randomized
Complete Block Design (RCBD) arranged in a strip plot
scheme. The experiment was conducted with three differ-
ent row spacings (0.60 m, 0.70 m, and 0.80 m) assigned to
the strips, while the four maize genotypes were arranged
within each strip, distributed across four replications.

Each plot consisted of two rows, each 8 m in length,
with 0.20 m spacing between plants within rows, totaling
80 plants per plot, with one seed planted per hill. This
arrangement corresponds to approximate plant densities of
83,333, 71,428, and 62,500 plants ha™! for row spacings
of 0.60 m, 0.70 m, and 0.80 m, respectively. The maize
genotypes tested are described in Table 1.

UAV model and image acquisition

A drone model Mavic 2 Pro was used to conduct flights
at heights of 60 and 80 meters, capturing RGB images
(20 megapixels) with an 80% lateral and frontal overlap.
Drone Deploy software (https://www.dronedeploy.com/)'®
was employed to plan and execute the flights. Five ground
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control points (GCPs) were established at the vertices of
the experimental area. Using GNSS RTK (FOIF model
A60), coordinates were collected to prevent errors in the
orthomosaics, which were georeferenced and generated
after processing.

The flights were conducted between 11:00 AM and 1:00
PM, exclusively on sunny days, to minimize the influence
of adverse weather conditions, such as cloud and precipi-
tation, thereby ensuring the quality and consistency of the
acquired images. A total of seven flights were performed
at different heights on various dates (Figure 1), covering

multiple phenological stages of the crop.

Image data processing

For image processing, the first step involved data

mining of the images. This stage is crucial for the success
of all subsequent analyses, as it encompasses image file
segmentation, correction of potential errors, cropping of
undesired areas, and other factors that influence the final
purity of the image data.®

Therefore, to obtain the Orthomosaics, a flight plan was
executed, delineating the experimental area to be surveyed
during the crop season. Additionally, productivity data was
collected through manual phenotyping (Figure 2-A). Sub-
sequently, using the WebODM interface of the OpenDrone-
Map (ODM)1 software on a 64-bit Windows plataform,
image calibration took place to correct displacement errors
utilizing control points, aiming to enhance the precision of

the orthomosaic (Figure 2-B).

Table 1. Characterization of the genotypes used in the experiment implemented on 22/05/2021

Genotypes Genetic class Grain type Technology Company
1 GNZ16(EX3WO07LVIP3) SH Semi-flint/ Orange Vip3 GENEZE
2 GNZ59 SH Semi-hard/ Orange - GENEZE
3 GNZ7720VIP3 SH Semi-flint/ Orange Vip3 GENEZE
4 AG8780 SH hard VTPRO3 AGROCERES

SH: Single-cross hybrids, VTPRO3: Vector triple protection 3, Vip3: Viptera 3. Source: Authors (2022)
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Figure 1. Image acquisition scheme using the Mavic 2 Pro drone at heights of 60 m and 80 m during different phenological stages of

the crop. 'PS: Phenological Stage, 2DAP: Days after planting. Source: Authors (2022).
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Figure 2. Workflow of the analyses conducted to obtain the 29 vegetation indices. Source: Authors (2022).

Image alignment was conducted with medium accu-
racy, employing 40,302 and 43,484 tie points, while the
adaptive camera model adjustment was disabled. The mean
reprojection error ranged from 1.35 to 1.47 pixels at flight
heights of 60 m and 80 m, respectively. The adopted co-
ordinate reference system was WGS 84 / UTM Zone 24S.
The survey at 60 m height generated a Ground Sampling
Distance (GSD) of 1.45 cm/pixel, whereas the 80 m flight
resulted in a GSD of 1.94 cm/pixel. These resolutions were
adequate for intra-plot variability analyses and for the
extraction of spectral indices.

Finally, in the QGIS software, adjustments were made
to the shapefile layer (shp) of the orthomosaic, including
geometric correction, calibration, and border trimming, in
order to improve spatial accuracy and image quality. These
procedures facilitated the subsequent extraction of RGB
vegetation indices in the RStudio software" (Figure 2-C).

A total of 29 vegetation indices (VIs) were extracted
from the orthomosaics (Table 2). The selection of vegeta-
tion indices for the temporal BLUP analysis was grounded
in their well-documented ability to detect changes in can-
opy structure, green vegetation, and biomass accumulation

throughout the crop growth cycle.

To accomplish this, initially, a shapefile was created
using the R function R/UAStools::plotshpcreate(). In the
R software, polygons were generated around each plot for
each genotype and row spacing based on the field map/
sketch.

In the R software, the UAStools::plotshpcreate() func-
tion was used with the "buffer" argument set as "rowbuf =
0.1" and "rangebuf = 0.5" to delineate the plots, avoiding
overlap of plants from adjacent plots. Since different spac-
ings were used, the "rowespc =0.8" function was employed,
encompassing the widest row spacing used, facilitating the
overlap of polygons in the plots. The shapefiles underwent
preprocessing in the QGIS software®® to adjust the poly-
gons in each plot, minimizing errors in vegetation index
extraction. At the end of the processing, 14 orthomosaics
with adjusted shapefiles were obtained, seven for each
flight altitude.

The FIELDimageR package was utilized in the R
software for extracting the 29 VIs from each plot.®> To
achieve this, the RFIELDImageR::fieldMask function was
used to eliminate soil color from the RGB images, with the
HUE vegetation index serving this purpose. The fieldIndex
function in R/FIELDImageR was employed to extract the
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29 vegetation indices for each flight date. The VIs BI, GLI,
NGRDI, VARI, and BGI were extracted using the "index="
argument, while the remaining indices were extracted

through formulas using the "mylIndex=" argument.

Statistical analysis for image phenotyping data

Conventional statistical analyses were conducted for
the grain yield variable. Grain yield measurements were
taken after harvesting the ears in each plot, weighed using
a scale, and adjusted to 13% moisture content. An analysis
of variance (equation 1) and a mean comparison test, spe-

cifically Tukey's test, were performed.

Vik = 1t + by + ex + pi + epp + error(a) ,+

error(b), + error(c) M

J ijk

In this model, y; refers to the individual observation for
each pedigree. The term u denotes the overall mean of the
response variable, expressed in kg/ha. The factor b; rep-
resents the effect of the j™ block, while e, refers to the effect
of the k™ plant spacing. The pedigree (genotype) effect is
represented by p;, and the interaction between plant spacing
and pedigree is expressed by $ep;,, which reflects how dif-
ferent genotypes respond to varying spacings. Additionally,

three error terms are included: error(a), representing the in-

Table 2. RGB Vegetation Indices applied in the phenotyping analyses

Vegetation indices

Equation'

Normalized green red difference index

(NGRDI)"®
Green leaf index (GLI)!'”

Visible atmospherically resistant index

(VART)™®
Spectral slope saturation index (SI)!
Blue green pigment index (BGI)?”

Brightness index (BI)@"
Excess red (ExR)®?

Excess green minus excess red index (ExGR)?
Excess green (ExG)?¥

Normalized blue (BCC)@®

Color index of vegetation extraction (CIVE)®)
Combined indices 1 (COM1)@®

Combined indices 2 (COM2)@"

Green minus red (GmR)®¥

Green minus blue (GmB)®¥

Green blue simple ratio index (GdB)@%

Green red simple ratio index (GdR)®¥

Green chromatic index (GCC)@¥

Modified excess green index (MExG)®®
Modified green red vegetation index (MGVRI)®”
Modified red chromatic coordinate index (MRCC)®
Normalized difference index (NDI)*»
Normalized difference red blue index (NDRBI)®”
Normalized green-blue difference index (NGBDI)G
Red minus blue index (RmB)@%

Red blue simple ratio index (RdB)?¥

Red chromatic coordinate index (RCC)??

Red green blue index (RGBVI)®”

Triangular greenery index (TGI)®?

Vegetative (VEG)®?

(G-R)/G+R)
(2*G-R-B)/(2*G+R+B)
(G-R)/(G+R-B)

(R-B)/(R+B)
B/G
VR?+ G2 +B?/3
((1.4*R)-
((3*G)-(2.4*R)-B)
((2*G)-R-B)
B/(R+G+B)
((0.441*R) (0.811*G)+(0.385*B)+18.78745)
ExG + CIVE + ExGR+ VEG
0.36*ExG + 0.47*CIVE + 0.17*VEG
G-R
G-B
G/B
G/R
(G/(R+G+B))
((1.262*G)-(0.884*R)-(0.311*B))
(G"2)-R"2))((G*2)+(R"2))
R73/(R+G+B)
(G-R)/ (G+R)
(R-B)/(R+B)
(GB)/(G + B)
R-B
R/B
(R/(R+G+B)
(((G"2)-(R*B))/((G"2)+H(R*B)))
(G~((0.39*R)-(0.69*B)))
G/R"0.667*B"0.334

I R= Red band; G= Green band; B= Blue band.
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teraction between block and spacing; error(b), referring to
the interaction between block and genotype; and error(c),
representing the residual experimental error not explained
by the previous components.

The statistical analyses of the temporally extracted
vegetation indices, here referred to as Temporal Vegetative
Indices (TVIs), as suggested by Adak et al. (2021),* and
grain yield (GY) along with their graphical visualizations
were conducted in the R software. To select the optimal
post-planting flight date (PPD) for 60m and 80m altitudes
and the most representative TVIs at each flight altitude, the
repeatability index was employed.

For this purpose, nested mixed models were fitted to
extract the BLUPs (Best Linear Unbiased Predictor) for
each vegetation index for each pedigree. Considering them
as a time series, they were termed as Temporal BLUPs
(TBLUPs). The lmer4::Imer() function®® was employed
for this purpose.

The first fitted model is represented by equation 2,
where the extraction of BLUPs for each vegetation index of
each pedigree on each flight day was considered separately
at 60m and 80m altitudes.

Y = u + Pedigree; 4 Spacing;, + Replication;+

@)

Range; + erroryy

Here, Y represents the individual observation of the vege-
tation index for each genotype. The term u stands for the
overall mean. Pedigree corresponds to the random effect
of the i genotype. The plant spacing (Spacing), replication
(Replication), and field strip (Range) are all treated as ran-
dom effects, each assumed to follow a normal distribution
with mean zero and a specific variance. The residual term
(error) captures the unexplained variation between the
factors, also normally distributed.

The repeatability assessment of the vegetation indices
was used as an indicator of the level of reproducibility as
accuracy in choosing genotypes using sensors attached to
Unmanned Aerial Vehicles (UAV). Therefore, repeatability
values above 65% were considered high, as observed im
previous studies by Herzig et al. (2021)®7 and Anderson et
al. (2019),4® which focused on evaluating the productivity
of barley and corn, respectively.

The repeatability was calculated for each vegetation
index, considering the variance explained by Pedigree and

error. as represented by equation 3.

2 A3)
R— O-Pedigree(i )

2
o-error([jkl)

2
O-Pedigree(i) J (ki)

Where aiedigm represents the variance attributed to the i
genotype, and Zeror corresponds to the residual variance,
considering spacing, replication, and range. The term j re-
fers to the number of replications.

In this study, the parameter estimated in Equation 3 was
interpreted as repeatability (r), reflecting the consistency
of vegetation index measurements across different replica-
tions and environments.

Although the model did not include the permanent
environmental variance component typically incorporated
in the formal definition of repeatability, this component
could not be estimated. In this context, the repeatability
parameter is conceptually employed to represent the re-
liability and temporal stability of spectral measurements.
High repeatability values (above 65%) indicate strong
consistency in phenotyping and are essential for reliable
genotype selection using UAV-based imaging data.

The second fitted model is represented by equation 4,
where the extraction of Temporal BLUPs (TBLUPs) for
the Temporal Vegetative Indices (TVIs) was considered for
each pedigree at both 60 m and 80 m altitudes.

Yijis =t + DAP; + [Pedigree (DAP)]; + [Spacing (DAP)],,+
[Range (DAP));, + [Replication (DAP)), + errory

(4)

The response variable Y corresponds to the vegetation
index value for a given genotype at a specific time. The
overall mean is denoted by u and DAP is a fixed effect
representing the flight date. All other terms, including
genotype [Pedigree(DAP)], spacing [Spacing(DAP)],
range [Range(DAP)], and replication [Replication( DAP)],
are considered random effects nested within time, each
assumed to follow a normal distribution. The residual error
term captures the remaining unexplained variability.

The repeatability was calculated for each Temporal
Vegetative Index (TVI), considering the variance explained
by [Pedigree (DAP)]ij and errory,,, as represented by
equation 5.

2
O-Pedigree(i ,)

R = 5)

2
o-error([jklz)

0.2
Pedigree(i,t) J (ki)

In this expression, a,zged[g,ee denotes the variance explained

2
by the i genotype over time ¢, while Perror represents the

Rev. Ceres, Vigosa, v. 72, €72038, 2025




Aerial imaging for early assessment of yield potential in maize 7

residual variance associated with spacing, replication,
range, and time. The term j corresponds to the number of
replications. This measure evaluates the consistency of
genotype performance over time and supports the identifi-
cation of stable and high-performing genotypes across
multiple flight dates.

Yield tracking with BLUPs over time

After selecting the VIs and TVIs that explained the
highest proportion of variance among genotypes at differ-
ent spacings estimated by repeatability, graphical repre-
sentation was carried out to select the most representative
flight altitude and track the temporal behavior of genotypes
during the vegetative phase using the selected TVIs.

To track the productive performance of genotypes over
time, the behavioral pattern of the selected TVIs was deter-
mined at each flight altitude. The BLUP of grain yield was
used as a marker to distinguish genotypes above and below
the average grain yield. For this purpose, the ggplot2::gg-
plot function®” was employed. Next, Pearson’s correlation
analysis was applied to the BLUPs of grain yield and the
selected vegetation indices to evaluate the strength and
direction of their relationships. This analysis aimed to
determine how effectively the spectral indices represented

variations in yield.

RESULTS

Significant differences were observed among geno-
types, indicating phenotypic variability grain yield, with
coefficients of variation were within the acceptable range
for the crop (Table 3). The genotypes GNZ59 and AG8780
exhibited the highest grain yields, with 5265.49 and
5275.95 kg/ha, respectively (Figure 3). These results are
promising for maintaining genotypes with desirable traits
in breeding programs, for use in future crosses.

It was observed that at 43 DAP, during the crop’s veg-
etative stage, the vegetation indices exhibited significant
repeatability for both tested flight heights (60m and 80m),
as shown in Figure 4. Furthermore, in later growth stages,
a decrease in repeatability was detected, suggesting that
late-stage assessments using these indices are not effective
for early selection.

Following the identification of the optimal period,
the selection of VIs was conducted. For the flight at 60m
height, the indices MRCC, RmB, and RCC exhibited the
highest repeatability values, with 67.81%, 65.83%, and
65.39% at 43 DAP, respectively (Figure 5).

For the flight at 80 m height, the indices MRCC,
Green, BI, Red, RmB, TGI, RCC, VARI, ExR, NDRBI,
and MGVRI showed the highest repeatability values,
with 73.91%, 73.69%, 73.25%, 73.17%, 72.37%, 70.33%,
70.23%, 68.04%, 67.38%, 67.01%, and 65.01% at 43 DAP,
respectively, as illustrated in Figure 5. These results indi-
cate that the mentioned indices are reliable for assessing
genotype productivity during the vegetative stage.

The BLUPs obtained from vegetation indices selected
based on the highest repeatability (as shown in Figure 5)
demonstrated effectiveness in differentiating genotypes
regarding grain yield at the determined flight point, at 43
DA (Figures 6 and 7).

Table 3. Summary of the analysis of variance for grain yield of
the evaluated genotypes

MS
SV
DF
GY
Block 3 162843
Spacing 2 3150949"
Error a 6 388435
Genotypes 3 3647216™
Error b 9 275649
Spacing x Genotypes 6 155818
Error ¢ 18 100314
Residue 47
Mean 5116.35
CVI1 (%) 13.00
CV2 (%) 10.95
CV3 (%) 6.60

DF = Degrees of freedom; SV = Source of variation; CV = coefficient of
variation; , * Significance level at 1% and 5% probability by the F-test
respectively; MS = Mean square, GY = Grain yield (kg/ha).

GNZ7720VIP3-

a

GNZ59-

Genotypes

GNZ16EX3WO7LVIP3-

B

AG8780-

“b
_|n

0 2000 4000 6000
Grain yield (kg/ha)

Figure 3. Tukey test for the grain yield of the genotypes evaluat-
ed. Bars with the same color and letters do not differ significantly.
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Figure 5. Identification of RGB Vegetation Indices with high repeatability at 60 and 80 meters height at 43 DAP. FH= Flight Height.

It is important to highlight in Figure 6 the behavior productive genotypes, while the RmB and RCC indices
of the MRCC, RmB and RCC vegetation indices, which  displayed a consistent and similar behavior for high-yield-
exhibited a relevant pattern for the research. The MRCC  ing genotypes, indicating their potential for early detection
index showed the highest predicted values for the most of high-productivity genotypes.
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Pearson's correlation analysis showed that the selected
vegetation indices were strongly associated with grain
yield (Tables 4 and 5).

At a flight height of 60 m, the MRCC, RmB, and RCC
indices exhibited strong positive correlations with yield
(r = 0.93-0.96), demonstrating their potential as reliable

Rev. Ceres, Vigosa, v. 72, €72038, 2025

predictors of yield. Similarly, at 80 m, strong correlations
0.88-0.99), confirming the
consistency of these indices at different flight heights.

were also observed (r

These results highlight the effectiveness of the selected
indices in representing the productive performance of the
genotypes.
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Table 4. Pearson correlation matrix between grain yield BLUPs
and the selected vegetation indices at 43 DAP and a flight height
of 60 m

PG RCC MRCC RmB
1 0.93 0.93 0.96
0.93 1 0.83 0.94
0.93 0.83 1 0.78
0.96 0.94 0.78 1

Table 5. Pearson correlation matrix between grain yield BLUPs
and the selected vegetation indices at 43 DAP and a flight height
of 80 m

PG RCC MRCC RmB
1 0.8 0.99 0.89
0.8 1 0.8 0.91
0.99 0.88 1 0.84
0.89 0.91 0.84 1

DISCUSSION

The findings of this study provide valuable insights into
the early detection of maize genotypes with productive po-
tential using RGB aerial images captured by unmanned ae-
rial vehicles (UAVs). The phenotypic variability observed
among the genotypes, reflected in significant differences in
grain yield, highlights the effectiveness of high-throughput
phenotyping (HTP) in enhancing selection processes with-
in breeding programs.

Explanation of the most significant findings

The analysis of variance confirmed the phenotypic
variability in grain yield among the evaluated genotypes,
demonstrating excellent performance in the coefficient of
variation, a parameter crucial for estimating the mean with
reliability, as discussed by Gurgel et al. (2013).49

The high reproducibility of the MRCC, RmB and RCC
vegetation indices underscores their accuracy in distin-
guishing maize genotypes during the vegetative phase.
These indices are strongly associated with physiological
attributes such as chlorophyll content, leaf area index,
and photosynthetic efficiency, which are fundamental
for biomass accumulation and, consequently, grain yield
potential 42

The selection of the imaging period at 43 days after
planting (DAP) aligns with key phenological stages (V6 to
V38), characterized by rapid vegetative growth and canopy
development.“!? This stage is crucial for establishing the

potential number of grain rows, directly impacting yield
outcomes.

The analyses of BLUPs derived from selected Vis
proved to be satisfactory, demonstrating the ability to dis-
cern differences in the average productivity of genotypes at
an early stage. This validation, as observed by Anderson et
al. (2019),4® highlights the potential of using images and
Vis, even during the juvenile stage, for genotype selection.

These findings reinforce the reliability of employing
aerial image phenotyping protocols for selecting maize
genotypes in the juvenile stage using RGB images before
the physiological maturity of the grain. These results have
significant implications for maize breeding programs,
expediting the prediction process of productive genotypes
and ultimately reducing the time required to obtain these
results.

Comparison with other studies

Our conclusions align with research by Anderson et al.
(2019)®® and Herzig et al. (2021),%” which also confirmed
the effectiveness of RGB indices in predicting the yield
potential of maize and barley, respectively, achieving
significant repeatability.

Resende et al. (2024)“® demonstrated that RGB-derived
indices, such as GLI and Ex@, are strongly correlated with
yield-related traits. In addition, the V5 and VT phenolog-
ical stages were identified as the most appropriate periods
for data collection. These results are in agreement with
our findings, where indices obtained during early develop-
mental stages exhibited greater discriminatory power. This
reinforces the potential of RGB imagery for monitoring
different phases of the crop cycle.

However, it is essential to consider the impact of en-
vironmental variability on the choice and applicability of
vegetation indices. Thus, evaluating whether the study site
accurately represents local growing conditions is crucial to
ensure that the results are consistent with real production
scenarios. The precision of the estimates relies not only
on the selection of indices but also on the quality of the
acquired images. In this context, flight altitude is a key
parameter, as it directly influences spatial resolution.

In contrast to Maresma et al. (2020),“Y who reported
optimal UAV flight heights around 100 meters, our study
identified 80 meters as the most effective height for maize
yield assessment.

Moreover, although authors such as Guo et al. (2023),“>
Abdulridha et al. (2023)“® and Sahoo et al. (2024)“” have
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highlighted the superiority of hyperspectral and multi-
spectral sensors, our findings suggest that RGB images,
when processed with robust statistical models, can achieve
equivalent predictive accuracy at a lower cost, particularly
for early-stage phenotyping.

Practical implications and future directions

The identification of highly repeatable VIs such as
MRCC, RmB, and RCC is particularly relevant for breed-
ing programs, since their stability across flight dates and
environments ensures greater reliability in early genotype
selection.

This consistency allows breeders to make more
confident decisions regarding genotype advancement at
juvenile stages, thereby reducing the number of field trials.
Furthermore, the operational simplicity and lower costs of
RGB imagery compared to multispectral or hyperspectral
approaches enhance its feasibility for large-scale use, espe-
cially in breeding programs with limited resources.

Nonetheless, it is important to recognize that the robust-
ness of RGB indices does not necessarily eliminate the val-
ue of multispectral and hyperspectral sensors. In situations
requiring fine discrimination of stress responses or nutrient
status, broader spectral data may outperform RGB.

Future research should expand the scope to include a
broader range of genotypes and environmental conditions
to confirm the reliability of the identified indices. Compar-
ative studies incorporating multispectral and hyperspectral

data could further clarify the relative benefits of each image

type.

CONCLUSION

This research highlights the effectiveness of RGB-
based vegetation indices, particularly MRCC, RmB and
RCC, in distinguishing early-stage maize genotypes. The
practical guideline for UAV-based phenotyping protocols
was identified at 43 DAP, with a flight height of 80 meters.
Despite some limitations, these findings contribute to ad-
vancing high-throughput phenotyping methods, supporting
more efficient breeding strategies and precision agriculture

practices.
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