Growth, relative chlorophyll content and concentration of inorganic solutes in sunflowers plants supplemented with marine macroalgae organic residue

Autores

  • Paulo Ovídio Batista de Brito IFCE
  • Kaio Martins IFCE
  • Rifandreo Monteiro Barbosa IFCE
  • Julyanne Fonteles de Arruda IFCE
  • Pedro Bastos de Macedo Carneiro UFPI
  • Franklin Aragão Gondim IFCE

Palavras-chave:

arribadas algae, Helianthus annuus L, organic residue

Resumo

One effect of the tidal dynamics is the accumulation during of large volumes of macroalgae the low tide, named “arribadas algae”. The objective of this work was to analyze the effects of using arribada alga eorganic residues (AAOR) on the initial growth of sunflower plants, where the following were evaluated: plant growth, relative chlorophyll content and inorganic solids content (Na, K, Cl and NO3). The algae were collected on Praia do Pacheco in Caucaia, state of Ceará, Brazil, washed in running water and placed to dry in the sun for seven days, then dried in a forced circulation oven at 80 ºC and crushed. The sunflower seeds were sown in 5 L plastic buckets, containing: 1) 100% (in volume) of sand; 2) sand + 100% of nitrogen recommendation - NR in commercial fertilizer (80 kg of N.ha-1); 3) sand + 50% of the NR in macroalgae; 4) sand + 100% of NR in macroalgae; and 5) sand + 150% of the NR in macroalgae. The use of AAOR improved the growth of the analyzed variables in relation to the plants grown in substrate with sand or sand + fertilizer. The best results were observed at 50% of the NR in AAOR. The addition of increasing concentrations of AAOR allowed a greater accumulation of beneficial ions such as K and NO3 while no significant differences were observed for toxic ions such as Na and Cl in relation to plants supplemented with fertilizer or sand. The use of AAOR in substrates can be an alternative to fertilizers in plant cultivation since it reduces production costs besides being a sustainable destination.

Referências

Adamski JM, Peters JA, Danieloski R & Bacarin MA (2011) Excess iron-induced changes in the photosynthetic characteristics of sweet potato. Journal of Plant Physiology, 168:2056-2062.

Araújo TVO, Lima AD, Marinho AB, de Lima Duarte JM, de Azevedo BM & Costa SC (2012) Lâminas de irrigação e coberturas do solo na cultura do girassol, sob condições semiáridas. Irriga, 17:126-136.

Bredemeier C & Mundstock CM (2000) Regulação da absorção e assimilação do nitrogênio nas plantas. Ciência Rural, 30:365-372.

Embrapa – Empresa Brasileira de Pesquisa Agropecuária (2014) Cultivar de girassol BRS 323. Disponível em: https://www.embrapa.br/busca-de-imagens/-/midia/1295001/cultivar-degirassol-brs-323. Acessado em: 10 de março de 2018.

Freire JO (2016) Cultivo do girassol irrigado sob diferentes lâminas de água e doses de nitrogênio. Tese de Doutorado. Universidade Federal Rural do Semi-Árido, Mossoró. 41p.

Grangeiro LC, De Freitas FC, Negreiros MZD, de TP Marrocos S, De Lucena RR & Oliveira RAD (2011) Crescimento e acúmulo de nutrientes em coentro e rúcula. Revista Brasileira de Ciências Agrárias, 6:11-16.

Kano C, Cardoso AII & Villas Boas RL (2010) Influência de doses de potássio nos teores de macronutrientes em plantas e sementes de alface. Horticultura Brasileira, 28:287-291.

Kumar G & Sahoo D (2011) Effect of seaweed liquid extract on growth and yield of Triticuma aestivum var. Pusa Gold. Journal of Applied Phycology, 23:251-255.

Laurett L, Fernandes AA, Schmildt ER, Almeida CP & Pinto MLPB (2017) Desempenho da alface e da rúcula em diferentes concentrações de ferro na solução nutritiva. Revista de Ciências Agrárias/Amazonian Journal of Agricultural and Environmental Sciences, 60:45-52.

Machado LP, da Silva Bispo WM, Matsumoto ST, Reis FO, dos Santos RB & de Oliveira Jr LFG (2011) Triagem de macroalgas com potencial antifúngico no controle in vitro da antracnose do mamoeiro (Carica papaya L.). Current Agricultural Science and Technology, 17:463-467.

Matysiak K, Kaczmarek S & Krawczyk R (2011) Influence of seaweed extracts and mixture of humic and fluvic acids on germination and growth of Zea mays L. Acta Scientiarum Polonorum. Agricultura, 10:33-45.

Nova LLMV, da Silva Costa MM, da Costa JG, da Silva Amorim EC & Guedes ÉAC (2014) Utilização de “Algas Arribadas” como alternativa para adubação orgânica em cultivo de moringa (Moringa oleifera Lam.). Revista Ouricuri, 4:68-81.

Rayorath P, Jithesh MN, Farid A, Khan W, Palanisamy R, Hankins SD, Critchley AT & Prithiviraj B (2008) Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. Journal of Applied Phycology, 20:423-429.

Sahrawat KL (2005) Iron toxicity in wetland rice and the role of other nutrients. Journal of Plant Nutrition, 27:1471-1504.

Trazzi PA, Caldeira MVW, Passos RR & de Oliveira Gonçalves E (2013) Substratos de origem orgânica para produção de mudas de teca (Tectona grandis Linn. F.). Ciência Florestal, 23:401-409.

Downloads

Publicado

2025-04-24

Como Citar

Ovídio Batista de Brito, P., Martins, K., Monteiro Barbosa, R., Fonteles de Arruda, J., Bastos de Macedo Carneiro, P., & Aragão Gondim, F. (2025). Growth, relative chlorophyll content and concentration of inorganic solutes in sunflowers plants supplemented with marine macroalgae organic residue. Revista Ceres, 65(5), 395–401. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/7661

Edição

Seção

ARTICLE

Artigos mais lidos pelo mesmo(s) autor(es)