Study of the genetic diversity of tomato (Solanum spp.) with ISSR markers
Palavras-chave:
wild tomato, germplasm, genetic variability, population structureResumo
In this study 55 tomato genotypes from different geographical regions were evaluated with ISSR markers (Inter Simple Sequence Repeats). The seven ISSR primers originated 63 amplified bands, of which 90.48% were polymorphic. The cluster analysis based on the Nei-Li similarity coefficient using the average genetic clustering method (UPGMA) revealed the conformation of five clusters at a level of similarity of 72%. The ISSR technique did not discriminate tomato genotypes according to the species or region of provenance. The structure analysis and the dendrogram did not reveal a genetic structure in the population evaluated. The genotypes of the species of S. pimpinellifolium, S. l. cerasiforme, S. lycopersicum and S. peruvianum were found consistently grouped, showing a close genetic relationship among them. A high genetic variation among the individuals within each of the groups formed was suggested by the AMOVA. The ISSR markers were effective in assessing the genetic diversity and structure of populations of tomato genotypes. The high genetic variability found in this study indicates the valuable genetic potential present in tomato germplasm, especially of wild species, which could be used for future breeding programs of the species.
Referências
Aguilera JG, Pessoni LA, Rodrigues GB, Elsayed AY, Silva DJH & Barros EG (2011) Variabilidad genética por marcadores ISSR en tomate (Solanum lycopersicon Mill.). Revista Brasileira de Ciências Agrárias, 6:243-252.
Ansari A, Sikarwar P, Lade S, Yadav H & Ranade SH (2016) Genetic diversity clusters in germplasm of Cluster Bean (Cyamopsis tetragonoloba L., Taub), an important food and an industrial legume crop. Journal of Agricultural Science and Technology, 18:1407-1418.
Dellaporta S, Wood J & Hicks J (1983) A plant DNA minipreparation: version II. Plant Molecular Biology Reporter, 1:19-21.
Bergougnoux V (2014) The history of tomato: from domestication to biopharming. Biotechnology Advances, 32:170-189.
Blanca J, Montero-Pau J, Sauvage C, Bauchet G, Illa E, Díez MJ, Francis D, Causse M, van der Knaap E & Cañizares J (2015) Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16:257.
Botstein D, White RL, Skolnick M & Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American journal of human genetics, 32:314-331.
Ceballos-Aguirre N, López W, Orozco-Cárdenas M, Morillo CY & Vallejo-Cabrera FA (2017) Use of microsatellites for evaluation of genetic diversity in cherry tomato. Bragantia, 76:220-228.
Evanno G, RegnautS & Goudet J (2005) Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14:2611-2620.
Gonias ED, Ganopoulos I, Mellidou I, Bibi AC, Kalivas A, Mylona PV, Osanthanunkul M, Tsaftaris A, Madesis P & Doulis AG (2019) Exploring genetic diversity of tomato (Solanum lycopersicum L.) germplasm of genebank collection employing SSR and SCAR markers. Genetic Resources and Crop Evolution, 66:1295-1309.
Henareh M, Dursun A, Abdollahi-Mandoulakani B & Haliloðlu K (2016) Assessment of genetic diversity in tomato landraces using ISSR markers. Genetika, 48:25-35.
Hernández-Ibáñez L, Sahagún-Castellanos J, Rodríguez-Pérez JE & Peña-Ortega MG (2017) Prediction of fruit yield and firmness of tomato hybrids with BLUP and RR-BLUP using ISSR molecular markers. Revista Chapingo Serie Horticultura, 23:21-33.
Herison C, Sutjahjo SH, Sulastrini I, Rustikawati R & Marwiyah S (2018) Genetic diversity analysis in 27 tomato accessions using morphological and molecular markers. Agrivita - Journal of Agricultural Science, 40:36-44.
Kandel DR, Bedre RH, Mandadi KK, Crosby K & Avila CA (2019) Genetic Diversity and Population Structure of Tomato (Solanum lycopersicum) Germplasm Developed by Texas A&M Breeding Programs. American Journal of Plant Sciences, 10:1154-1180.
Kaushal A, Singh A & Singh AJ (2017) Genetic diversity in tomato (Solanum lycopersicum L) genotypes revealed by simple sequence repeats (SSR) markers. Journal of Applied and Natural Science, 9:966- 973.
Levy A, Rabinowitch HD & Kedar N (1978) Morphological and physiological characters affecting flower drop and fruit set of tomatoes at high temperatures. Euphytica, 27:211-218.
Lucatti AF, Van Heusden AW, De Vos RCH, Visser RGF & Vosman B (2013) Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evolutionary Biology, 13:175.
Marin-Montes IM, Lobato-Ortiz R, Carrillo-Castañeda G, Rodríguez-Pérez JE, García-Zavala JJ & Velasco-García AM (2019) Riqueza alélica de poblaciones nativas de jitomate (Solanum lycopersicum L.) para el mejoramiento genético. Agrociencia, 53:355-370.
Miller MP (1997) Tools for population genetic analysis (TFPGA), 1.3: A windows program for the analysis of allozyme and molecular population genetic data. CD-ROM. (Compute software distributed by the author).
Miller JC & Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theoretical and Applied Genetics, 80:437-448.
Morales-Palacio MN, Morales-Astudillo ÁR, Artiles-Valor A, Milián-García Y & Espinosa-López G (2016) Caracterización fenotípica y genética de cuatro especies silvestres del género Solanum, sección Lycopersicon. Cultivos Tropicales, 37:109-119.
Muñoz JE, Morillo CA & Morillo CY (2008) Microsatélites amplificados al azar (RAM´s) en estudios de diversidad genética vegetal. Acta Agronomy, 57:219-226.
Nakazato T & Housworth EA (2011) Spatial genetics of wild tomato species reveals roles of the Andean geography on demographic history. American Journal of Botany, 98:88-98.
Nei M (1983) Estimation of genetic distance and phylogenetic trees from DNA analysis. Proceedings of 5th World Congress on Genetics Applied to Livestock Production, 21:405-412.
Nei M & Li WH (1979) Mathematical model for studying genetic variation in terms of restricción endonucleasa. Proceedings of the National Academy of Sciences, 76:5269-5273.
Peakall R & Smouse P (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and researchan update. Bioinformatics, 28:2537-2539.
Peralta IE & Spooner DM (2005) Morphological characterization and relationships of wild tomatoes (Solanum L. Section Lycopersicon) Monographs in Systematic Botany from the Missouri Botanical Garden, 104:227-257.
Peralta IE & Spooner DM (2007) History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK & Mattoo AK (Eds.) Genetic improvement of Solanaceous crops. Beltsville, Science Publisher. p.01-24.
Pritchard JK, Stephens M & Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics, 155:945-959.
Ranc N, Muños S, Santoni S & Causse M (2008) A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biology, 8:130.
Rick CM (1958) The role of natural hybridization in the derivation of cultivated tomatoes of western South America. Economic Botany, 12:346-367.
Rothan C, Diouf I & Causse M (2019) Trait Discovery and Editing in Tomato. Plant Journal, 97:73-90.
Wright S (1978) Evolution and the genetics of populations: Volume 4: Variability within and among natural populations. Illinois, University of Chicago Press. 590p.
Zietkiewicz E, Rafalski A & Labuda D (1994) Genome fingerprinting by simple sequence repeats (SSR)- anchored polymerase chain reaction amplication. Genomics, 20:176-183.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.