Study using a CFD approach of the efficiency of a roof ventilation closure system in a multi-tunnel greenhouse for nighttime microclimate optimization
Palavras-chave:
numerical simulation, finite volume method, greenhouse climate optimization, thermal inversionResumo
The thermal efficiency of naturally ventilated greenhouses is limited due to the permanent exchange of air through the vents, especially during the night hours. The objective of the work consisted in evaluating a system of inflatable air ducts that close the roof vents during the night as a strategy to reduce the energy loss during these hours. For the development of this work, we applied the computational fluid dynamics (CFD) method to a passive multi span greenhouse operating under the dominant nocturnal climatic conditions of the Bogota savannah (Colombia). The results indicated that the use of the ducts system reduces the value of the negative thermal gradient between the interior and exterior of the greenhouse. The CFD model used was validated by comparing experimental data and simulated data and by calculating goodness-of-fit parameters, finding that the numerical model predicts satisfactorily and with an adequate degree of fit the actual thermal behavior of the greenhouse evaluated.
Referências
Akrami M, Javadi AA, Hassanein MJ, Farmani R, Dibaj M, Tabor GR & Negm A (2020a) Study of the effects of vent configuration on mono-span greenhouse ventilation using computational fluid dynamics. Sustainability, 12:986.
Akrami M, Salah AH, Javadi AA, Fath HES, Hassanein MJ, Farmani R, Dibaj M & Negm A (2020b) Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield. Sustainability, 12:2794.
Bartzanas T, Boulard T & Kittas C (2004) Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosystems Engineering, 88:479-490.
Baxevanou C, Fidaros D, Bartzanas T & Kittas C (2010) Numerical simulation of solar radiation, air flow and temperature distribution in a naturally ventilated tunnel greenhouse. Agricultural Engineering International: CIGR Journal, 12:48-67.
Benni S, Tassinari P, Bonora F, Barbaresi A & Torreggiani D (2016) Eficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy and Buildings, 125:276-286.
Bojacá CR, Monsalve O, Casilimas H, Villagrán EA, Gil R, Arias LA & Fuentes LS (2012) Manual de producción de pimentón bajo invernadero. Bogotá, Universidad Jorge Tadeo Lozano. 200p.
Bournet PE, Chassériaux G & Winiarek V (2006) Simulation of energy transfers in a partitioned glasshouse during daytime using a Bi-band radiation model. Acta Horticulturae, 719:357-364.
Bournet PE, Morille B & Migeon C (2017) CFD prediction of the daytime climate evolution inside a greenhouse taking account of the crop interaction, sun path and ground conduction. Acta Horticulturae, 1170:61-70.
Chen Q (2009) Ventilation performance prediction for buildings: A method overview and recent applications. Building and Environment, 44:848-858.
Espinal-Montes V, López-Cruz I, Rojano-Aguilar A, RomantchikKriuchova E & Ramírez-Arias A (2015) Determinación de los gradientes térmicos nocturnos en un invernadero usando dinámica de fluidos computacional. Agrociencia, 49:233–247.
Espinoza K, López A, Valera DL, Molina-Aiz FD, Torres JA & Peña A (2017) Effects of ventilator configuration on the flow pattern of a naturally-ventilated three-span Mediterranean greenhouse. Biosystems Engineering, 164:13-30.
Fidaros DK, Baxevanou CA, Bartzanas T & Kittas C (2010) Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day. Renewable Energy, 35:1380-1386.
Flores-Velázquez J, Mejía-Saenz E, Montero-Camacho J & Rojano A (2011) Numerical analysis of the inner climate in a mechanically-ventilated greenhouse with three spans. Agrociencia, 45:545-560.
He X, Wang J, Guo S, Zhang J, Wei B, Sun J & Shu S (2017) Ventilation optimization of solar greenhouse with removable back walls based on CFD. Computers and Electronics in Agriculture, 149:16-25.
Iglesias N, Montero JI, Muñoz P & Antón A (2009) Estudio del clima nocturno y el empleo de doble cubierta de techo como alternativa pasiva para aumentar la temperatura nocturna de los invernaderos utilizando un modelo basado en la Mecánica de Fluidos Computacional (CFD). Horticultura Argentina, 28:18-23.
Katsoulas N, Bartzanas T, Boulard T, Mermier M & Kittas C (2006) Effect of Vent Openings and Insect Screens on Greenhouse Ventilation. Biosystems Engineering, 93:427-436.
Kim R, Hong S, Lee I & Kwon K (2017) Evaluation of wind pressure acting onmulti-spangreenhouses using CFD technique. Part 2: Application of the CFD model. Biosystems Engineering, 164:257-280.
McCartney L & Lefsrud MG (2018) Field trials of the Natural Ventilation Augmented Cooling (NVAC) greenhouse. Biosystems Engineering, 174:159-172.
Majdoubi H, Fatnassi H, Boulard T, Senhaji A, Demrati H, Mouqallid M & Bouirden L (2017) Computational study of thermal performance of an unheated canarian-Type greenhouse: Influence of the opening configurations on airflow and climate patterns at the crop level. Acta Horticulturae, 1182:87-94.
Majdoubi H, Boulard T, Fatnassi H, Senhaji A, Elbahi S, Demrati H & Bouirden L (2016) Canary Greenhouse CFD Nocturnal Climate Simulation. Open Journal of Fluid Dynamics, 6:88-100.
Mesmoudi K, Bougoul S & Bournet PE (2012) Thermal performance of an unheated greenhouse under semi-arid conditions during the night. Acta Horticulturae, 952:417-424.
Mesmoudi K, Meguallati K & Bournet P (2017) Effect of the greenhouse design on the thermal behavior and microclimate distribution in greenhouses installed under semi-arid climate. Heat Transfer-Asian Research, 46:1294-1311.
Mohammadrezaei R, Zareei S & Behroozi-Khazaei N (2017) Improving the performance of mechanical stirring in biogas plant by computational fluid dynamics (CFD). Agricultural Engineering International. CIGR Journal, 19:91–97.
Montero JI (2006) Evaporative cooling in greenhouses: Effect on microclimate, water use efficiency and plant respons. Acta Horticulturae, 719:373-383.
Montero JI, Muñoz P, Antón A & Iglesias N (2005) Computational fluid dynamic modelling of night-time energy fluxes in unheated greenhouses. Acta Horticulturae, 691:403-410.
Montero JI, Muñoz P, Sánchez-Guerrero MC, Medrano E, Piscia D & Lorenzo P (2013) Shading screens for the improvement of the night time climate of unheated greenhouses. Spanish Journal of Agricultural Research, 11:32-46.
Piscia D, Muñoz P, Panadès C & Montero JI (2015) A method of coupling CFD and energy balance simulations to study humidity control in unheated greenhouses. Computers and Electronics in Agriculture, 115:129-141.
Piscia D, Montero JI, Baeza E & Bailey BJ (2012) A CFD greenhouse night-time condensation model. Biosystems Engineering, 111:141-154.
Rojano F, Flores-Velázquez J, Villarreal-Guerrero F & Rojano A (2014) Dynamics of climatic conditions in a greenhouse: Two locations in Mexico. Acta Horticulturae, 1037:955-962.
Tadj N, Nahal MA, Draoui B & Kittas C (2017) CFD simulation of heating greenhouse using a perforated polyethylene ducts. International Journal of Engineering Systems Modelling and Simulation, 9:03-11.
Teitel M, Liran O, Tanny J & Barak M (2008) Wind driven ventilation of a mono-span greenhouse with a rose crop and continuous screened side vents and its effect on flow patterns and microclimate. Biosystems Engineering, 101:111–122.
Tong G & Christopher DM (2018) New insights on span selection for Chinese solar greenhouses using CFD analyses. Computers and Electronics in Agriculture, 149:03-15.
Villagrán EA, Gil R, Acuña JF & Bojacá CR (2012) Optimization of ventilation and its effect on the microclimate of a colombian multispan greenhouse. Agronomia Colombiana, 30:282-288.
Villagrán EA, Baeza Romero EJ & Bojacá CR (2019) Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosystems Engineering, 188:288-304.
Villagrán EA & Bojacá CR (2019a) Determination of the Thermal Behavior of a Colombian Hanging Greenhouse Applying CFD Simulation. Revista Ciencias Técnicas Agropecuarias, 28:01-10.
Villagrán EA & Bojacá CR (2019b) Effects of surrounding objects on the thermal performance of passively ventilated greenhouses. Journal of Agricultural Engineering, 50:20-27.
Villagrán EA & Bojacá CR (2019c) Study of natural ventilation in a Gothic multi-tunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Horticulture, 25:133-143.
Villagrán EA & Bojacá CR (2019d) CFD simulation of the increase of the roof ventilation area in a traditional Colombian greenhouse: Effect on air flow patterns and thermal behavior.
International Journal of Heat and Technology, 37:881-892.
Villagrán EA & Bojacá CR (2019e) Numerical evaluation of passive strategies for nocturnal climate optimization in a greenhouse designed for rose production (Rosa spp.). Ornamental Horticulture, 25:351–364.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.