Adaptability and stability of maize genotypes in growing regions of central Brazil

Autores

  • Euriann Lopes Marques Yamamoto UFGD
  • Manoel Carlos Gonçalves UFGD
  • Livia Maria Chamma Davide UFGD
  • Adriano dos Santos Embrapa
  • Liliam Silvia Candido UFGD

Palavras-chave:

Zea mays L., Lin & Binns with decomposition, REML/BLUP, GGE-Biplot, AMMI-Biplot

Resumo

This study aimed to estimate and compare parameters of adaptability and stability for maize grain yield in a variety of environments by different projection methods. Data from experiments on 36 maize genotypes, in simple lattice 6x6, in 2012/13 season performed at nine growing locations in central Brazil were used. Adaptability and stability analyses were performed using the methods of Lin & Binns (1988) with decomposition, MHPRVG through REML/BLUP, AMMI-Biplot, and GGE-Biplot analysis. These methods have similarities in terms of genotype ordering but differ in precision and amount of information provided on genotype-environment (GxE) interactions. When compared to GGE-Biplot, AMMI method retained a good percentage of the total square sum, based on pattern of GxE interaction. The method of Lin & Binns with decomposition is similar to MHPRVG, but these one is more accurate, practice and informative. MHPRVG and GGE-Biplot methods should be used together to select the most promising genotypes. The genotypes G5 and G8 can be recommended for cultivation in central Brazil due to their adaptability, stability, and yield.

Referências

Abate M (2020) Genotype by environment interaction and yield stability analysis of open pollinated maize varieties using AMMI model in Afar Regional State, Ethiopia. Journal of Plant Breeding and Crop Science, 12:08-15.

Bocianowski J, Nowosad K & Tomkowiak (2019) Genotype – environment interaction for seed yield of maize hybrids and lines using the AMMI model. Maydica, 64:01-08.

Borem A, Miranda GV & Fritsche-Neto R (2017) Melhoramento de plantas. 7ª ed. Viçosa, Editora UFV. 523p.

Cargnelutti Filho A & Guadagnin JP (2018) Number of experiments for adaptability and stability analysis in maize by Lin and Binns method. Ciência Rural, 48:01-08.

Carneiro PCS (1998) Novas metodologias de análise da adaptabilidade e estabilidade de comportamento. Tese de Doutorado. Universidade Federal de Viçosa, Viçosa. 155p.

Cornelius PL, Seyedsadr M & Crossa J (1992) Using the shifted multiplicative model to search for “separability” in crop cultivar trials. Theoretical and Applied Genetics, 84:161-172.

Cruz CD (2013) GENES - A software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35:271-276.

Cruz CD, Regazzi AJ & Carneiro PCS (2012) Modelos biométricos aplicados ao melhoramento genético. 4ª ed. Viçosa, Editora UFV. 514p.

Faria SV, Luz LS, Rodrigues MC, Carneiro PCS & Delima RO (2017) Adaptability and stability in commercial maize hybrids in the southeast of the State of Minas Gerais, Brazil. Revista Ciência Agronômica, 48:347-357.

Felipe CRP, Duarte JB & Cmarano LF (2010) Estratificação ambiental para avaliação e recomendação de variedades de milho no estado de Goiás. Pesquisa Agropecuária Tropical, 40:186-199.

Gollob HF (1968) A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika, 33:73-115.

Hongyu K, García-Peña M, Araújo LB & Dias CTS (2014) Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction. Biometrical Letters, 51:89-102.

Hongyu K, Silva FL, Oliveira ACS, Sarti DA, Araújo LB & Dias CTS (2015) Comparação entre os modelos AMMI e GGE biplot para os dados de ensaios multi-ambientais. Revista Brasileira de Biometria, 33:139-155.

INMET - Instituto Nacional de Meteorologia (2017) BDMEP - Banco de Dados Meteorológicos para Ensino e Pesquisa. Available at: <http://www.inmet.gov.br/projetos/rede/pesquisa/>. Accessed on November 17th, 2017.

Lin CS & Binns MRA (1988) Superiority measure of cultivar performance for cultivar x location data. Canadian Journal of Plant Science, 68:193-198.

Machado NG, Lotufo-Neto N & Hongyu K (2019) Statistical analysis for genotype stability and adaptability in maize yield based on environment and genotype interaction models. Ciência e Natura, 41:01-09.

Mendes FF, Guimarães LJM, Souza JC, Guimarães PEO, Pacheco CAP, Machado JRA, Meirelles WF, Silva AR & Parentoni SN (2012) Adaptability and stability of maize varieties using mixed model methodology. Crop Breeding and Applied Biotechnology, 12:111-117.

Oliveira IJ, Atroch AL, Dias MC, Guimarães LJ & Guimarães PEG (2017) Selection of corn cultivars for yield, stability, and adaptability in the state of Amazonas, Brazil. Pesquisa Agropecuária Brasileira, 52:455-463.

Oliveira RL, Pinho RGV, Balestre M & Ferreira DV (2010) Evaluation of maize hybrids and environmental stratification by the methods AMMI and GGE biplot stratification by the methods AMMI and GGE biplot. Crop Breeding and Applied Biotechnology, 10:247-253.

Oliveira TRA, Carvalho HWL, Oliveira GHF, Costa EFN, Gravina GA, Santos RF & Carvalho Filho JLS (2019) Hybrid maize selection through GGE biplot analysis. Bragantia, 78:166-174.

Oliveira IJ, Fontes JRA & Morais RR (2020) Agronomic performance of eight corn genotypes in two sowing periods. Revista Agro@mbiente, 14:01-16.

Purchase JL, Hatting H & Vandeventer CS (2000) Genotype × environment interaction of winter wheat (Triticum aestivum L.) in South Africa: Stability analysis of yield performance. South African Journal of Plant and Soil, 17:101-107.

R Development Core Team (2018) R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. 2673p.

Resende MDV (2016) Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and Applied Biotechnology, 16:330-339.

Resende MDV & Duarte JB (2007) Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, 37:182-194.

Rezende WS, Beyene Y, Mugo S, Ndou E, Gowda M, Sserumaga JP, Asea G, Ngolinda I, Jumbo M, Oikeh SO, Olsen M, Borem A, Cruz CD & Prasanna BM (2020) Performance and yield stability of maize hybrids instress-prone environments in eastern Africa. The Crop Journal, 8:107-118.

Rezende WS, Cruz CD, Borem A & Rosado RDS (2021) Half a century of studying adaptability and stability in maize and soybean in Brazil. Scientia Agricola, 78:01-09.

Rodovalho MA, Coan MMD, Scapim CA, Pinto RJB & ContrerasSoto RI (2015) Comparison of HMRPGV, Lin and Binn’s, and Annichiarico’s methods for maize hybrid selection for high and stable yield. Maydica, 60:M10.

Santos DC, Pereira CH, Nunes JAR & Lepre AL (2019) Adaptability and stability of maize hybrids in unreplicated multienvironment trials. Revista Ciência Agronômica, 50:83-89.

Yan W (2011) GGE Biplot vs AMMI graphs for genotype-byenvironment data analysis. Journal of the India Society of Agricultural Statistics, 65:181-193.

Yan W & Tinker NA (2006) Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86:623-645.

Zobel RW, Madison JW & Gauch HG (1988) Statistical analysis of a yield trial. Agronomy Journal, 80:388-393.

Downloads

Publicado

2025-05-16

Como Citar

Lopes Marques Yamamoto, E., Gonçalves, M. C., Chamma Davide, L. M., dos Santos, A., & Silvia Candido, L. (2025). Adaptability and stability of maize genotypes in growing regions of central Brazil. Revista Ceres, 68(3), 201–211. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/7850

Edição

Seção

PLANT BREEDING APPLIED TO AGRICULTURE

Artigos mais lidos pelo mesmo(s) autor(es)