Early prediction of frost events in high altitude crops, using machine learning methods
Palavras-chave:
forecast, artificial neural networks, gradient boosting, climatic variablesResumo
In the tropic, many crops are distributed in the highlands of provinces of the Andean regions at heights of 2,500 m asl and constitute the areas with the highest susceptibility to the frost events occurrence. The study objective was to propose an early frost prediction model based on the relationships between frost events and climatic variables, modeled with machine learning methods. The climatic variables were obtained from thirteen meteorological stations located inside flower crops and distributed in nine municipalities of the Cundinamarca Department. The variables registered were temperature, relative humidity, dew point, photosynthetically active radiation, and precipitation, entered as explanatory variables of frost events. The metrics used for predictive performance evaluation of the five machine learning methods examined were precision, recall, true negative rate, accuracy, and F1 score. The variables’ climatic behavior of previous hours to a frost event are low humidity, wind speed and cloudiness, and high thermal radiation. The fourth of the five trained models performed well due to their classification evaluation metrics, greater than 91%. The cross-validation and statistical analysis demonstrated the higher accuracy of the GBDT model on frost events detection.
Referências
Aguilar M & Torres SB (2010) Protocolo de uso y aprovechamiento de la uva de anís, Cavendishia bracteata (Ruiz y Pavón ex Jaume Saint. Hillaire) Horeold, en matorrales andinos del Altiplano Cundiboyacense. Bogotá, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Ministerio de Agricultura y Desarrollo Rural y Cámara de Comercio de Bogotá. 32p.
Arribillaga D, Bravo R, Campos C, Fuentes M, Gatica J, Luchabeche P, Quintana J, Reyes M, Salacar C, Salvo del Pedregal J & Vidal M (2020) Heladas. Factores, tendencias y efectos en frutales y vides. Chile, Instituto de Investigaciones Agropecuarias INIA. 102p. (Technical Bulletin, 417).
Becerra LL (2021) San Valentín, el desquite de los floricultores en pandemia. Available at: <https://www.portafolio.co/economia/sanvalentin-el-desquite-de-los-floricultores-en-pandemia-con-las-exportaciones-de-flores-548989>. Accessed on: October 18th, 2021.
Brito A de A, de Araújo HA & Zebende GF (2019) Detrended Multiple Cross-Correlation Coefficient applied to solar radiation, air temperature and relative humidity. Scientific Reports, 9:19764.
Charbuty B & Abdulazeez A (2021) Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2:20-28.
Cho S, Kim YJ, Lee M, Woo JH & Lee HJ (2021) Cut-off points between pain intensities of the postoperative pain using receiver operating characteristic (ROC) curves. BMC Anesthesiol, 21:29.
Danandeh A (2021) Drought classification using gradient boosting decision tree. Acta Geophysica, 69:909-918.
DeVries Z, Locke E, Hoda M, Moravek D, Phan K, Stratton A, Kingwell S, Wai EK & Phan P (2021) Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability. Spine Journal, 21:1135-1142.
Diedrichs AL, Bromberg F, Dujovne D, Brun-Laguna K & Watteyne T (2018) Prediction of Frost Events Using Machine Learning and IoT Sensing Devices. IEEE Internet of Things Journal, 5:4589-4597.
Ding L, Noborio K & Shibuya K (2019) Frost forecast using machine learning - From association to causality. Procedia Computer Science, 159:1001-1010.
Dinh TV, Nguyenm H, Tran XL & Hoang ND (2021) Predicting rainfall-induced soil erosion based on a hybridization of adaptive differential evolution and support vector machine classification. Mathematical Problems in Engineering, 2021:01-20.
Fuentes M, Campos C & García S (2018) Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast. Chilean Journal of Agricultural Research, 78:327-338.
Gao S, Calhoun VD & Sui J (2018) Machine learning in major depression: From classification to treatment outcome prediction. CNS Neuroscience and Therapeutics, 24: 1037-1052.
Gómez D, Araujo G, Martínez FE, Rodríguez AO, Estupiñan JM & Deantonio LY (2021) Análisis de eventos climáticos extremos asociados a excesos de lluvia y heladas meteorológicas en el Altiplano Cundiboyacense de Colombia. Revista de Climatología, 21:112-126.
González OC & Torres CF (2012) Actualización nota técnica heladas. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Available at: <http://www.ideam.gov.co/documents/21021/21147/Documento+FINAL+actualizacion+nota+tecnica+heladas.pdf/e10a0183-62e6-410a-8e96-7e0739f6f06b>. Accessed on: October 21th, 2021.
Guhl E (2013) La región hídrica de Bogotá. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 37:327-341.
Joshi NC, Yadav D, Ratner K, Kamara I, Aviv E, Irihimovitch V & Charuvi D (2020) Sodium hydrosulfide priming improves the response of photosynthesis to overnight frost and day high light in avocado (Persea americana Mill, cv. ‘Hass’). Physiologia Plantarum, 168:394-405.
Juurakko CL, diCenzo GC & Walker VK (2021) Cold acclimation and prospects for cold-resilient crops. Plant Stress, 2:100028.
Kochhar SL & Gujral SK (2020) Plant Physiology: Theory and Applications. 2nd ed. Cambridge, Cambridge University Press. 866p.
Latif RMA, Belhaouari SB, Saeed S, Imran LB, Sadiq M & Farha M (2020) Integration of Google Play Content and Frost Prediction Using CNN: Scalable IoT Framework for Big Data. IEEE Access, 8:6890-6900.
Lee H, Chun JA, Han HH & Kim S (2016) Prediction of Frost Occurrences Using Statistical Modeling Approaches. Advances in Meteorology, 2016:01-09.
Li X, Ahammed JG, Li Z, Zhang L, Wei J, Yan P, Zhang LP & Han WY (2018) Freezing stress deteriorates tea quality of new flush by inducing photosynthetic inhibition and oxidative stress in mature leaves. Scientia Horticulturae, 230:155-160.
Luengas E, Guhl A, Castro JC, González LN & Restrepo S (2021) Modeling the correlation between potato disease spread and climate variables to guide fungicide applications in Cundinamarca, Colombia. Naturaleza y Sociedad. Desafíos Medioambientales, 1:07-42.
Marmolejo D & Ruiz JE (2018) Tolerance of native potatoes (Solanum spp.) to ice creams in the context of climate change. Scientia Agropecuaria, 9:393-400.
Mayorga M, Fischer G, Melgarejo LM & Parra A (2020) Growth, development and quality of Passiflora tripartita var. Mollissima fruits under two environmental tropical conditions. Journal of Applied Botany and Food Quality, 93:66-75.
Ministerio de Agricultura y Medio Ambiente (2020) “Debemos mantener la guardia con medidas preventivas frente a bajas temperaturas y fenóme no de La Niña”: ministro Rodolfo Zea. Available at: <https://www.minagricultura.gov.co/noticias/Paginas/%E2%80%9CDebemos-mantener-la-guardia-con-medidas-preventivas-frente-a-bajas-temperaturas-y-fen%C3%B3meno-de-La-Ni%C3%B1a%E2%80%9D-ministro-Rodolfo-Ze.aspx>. Accessed on: September 29th, 2021.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M & Duchesnay É (2011) Scikitlearn: Machine Learning in Python. Journal of Machine Learning Research, 12:2825-2830.
Rout BM (2020) Advances in Freezing Stress Resistance in Vegetable Crops. Biotica Research Today, 2:261-263.
Shahhosseini M, Hu G & Pham H (2022) Optimizing ensemble weights and hyperparameters of machine learning models for regression problems. Machine Learning with Applications, 7:100251.
Sheetal A, Jiang Z & Di Milia L (2023) Using machine learning to analyze longitudinal data: A tutorial guide and best‐practice recommendations for social science researchers. Applied Psychology, 72:1339-1364.
Simnitt S, Borisova T, Chavez D & Olmstead M (2017) Frost protection for Georgia Peach varieties: Current practices and information needs. HortTechnology, 27:344-353.
Trilles S, Juan P, Chaudhuri S & Fortea ABV (2021) Data on CO2, temperature and air humidity records in Spanish classrooms during the reopening of schools in the COVID-19 pandemic. Data in Brief, 39:107489.
Vargas C (2021) 10 mil hectáreas de cultivos se han perdido en Cundinamarca por las heladas y la sequía. Available at: <https://www.rcnradio.com/colombia/region-central/10-mil-hectareas-de-cultivos-se-han-perdido-en-cundinamarca-por-las-heladas>. Accessed on: November 15th, 2021.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.