Physiological response induced by biostimulants on plantain plants (Musa AAB) under Ralstonia solanacearum race 2 stress

Autores

  • Diana Mayerly Mateus-Cagua AGROSAVIA
  • Adriana González-Almario Universidad Nacional de Colombia (UNAL)
  • Mónica Betancourt-Vásquez AGROSAVIA
  • Gustavo Adolfo Rodríguez-Yzquierdo AGROSAVIA

Palavras-chave:

plant physiology, resistance inductors, gas exchange, roots, moko

Resumo

Ralstonia solanacearum race 2 (Rs) is the causal agent of Moko, one of the most limiting diseases of plantain. This study aimed to determine if the preventive application of salicylic acid (SA), silicon dioxide (Si), Bacillus amyloliquefaciens (Ba), and Bacillus subtilis (Bs) reduce the disease development and mitigate the plant physiological damage caused by Rs. For this, plantain plants cv. Hartón (Musa AAB) at nursery stage were established in a split-plot design and treated with biostimulants before the inoculation with Rs. Disease development and plant physiological variables were evaluated post-inoculation. Application of SA and Si on inoculated plants improved the relative water content, quantic yield of the photosystem II, electrons transport rate, gas exchange, and promoted dry biomass partition to the roots and a higher roots elongation. Plants treated with these biostimulants showed the lowest disease degree in comparison to inoculated control plants. Moreover, non-inoculated plants treated with Si and Bs significantly improved their photosynthetic capacity, biomass accumulation, and root elongation compared to non-inoculated control plants. Results suggest that preventive application of SA and Si reduces the Moko disease development whereas Si and Bs improve the physiological features of the plants.

Referências

Aloyce A, Ndakidemi PA & Mbega ER (2017) Identification and management challenges associated with Ralstonia solanacearum (Smith), causal agent of bacterial wilt disease of tomato in Sub-Saharan Africa. Pakistan Journal of Biological Sciences, 20:530-542.

Álvarez B, Biosca E & López M (2010) On the life of Ralstonia solanacearum, a destructive bacterial plant pathogen. In: Méndez-Vilas A (Ed.) Current research, technology and education topics in applied microbiology and microbial biotechnology. Badajoz, Formatex Research Center. p.267-279.

Barrs HD & Weatherley PE (1962) A Re-Examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15:413-428.

CABI – Centre for Agricultural Bioscience International (2020) Ralstonia solanacearum race 2 (moko disease) [Datasheet]. Available at: <https://www.cabi.org/isc/datasheet/44999>. Accessed on: February 7th, 2023.

Caldwell D (2016) The role of root anatomy and root architecture in resistance to Ralstonia solanacearum. Master Dissertation. Purdue University, Indiana. 84p.

Calvo P, Nelson L & Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant and Soil, 383:03-41.

Ceballos G, Álvarez E & Bolaños MM (2014) Reducción de poblaciones de Ralstonia solanacearum raza 2 (Smith) en plátano (Musa AAB Simmonds) con aplicación de extractos de Trichoderma sp. (Alexopoulus y Mims) y bacterias antagonistas. Acta Agronómica, 63:80-87.

Chávez-Arias CC, Gómez-Caro S & Restrepo-Díaz H (2020) Physiological responses to the foliar application of synthetic resistance elicitors in cape gooseberry seedlings infected with Fusarium oxysporum f. sp. physali. Plants, 9:176.

Choi HK, Iandolino A, da Silva FG & Cook DR (2013) Water deficit modulates the response of Vitis vinifera to the Pierce’s disease pathogen Xylella fastidiosa. Molecular Plant-Microbe Interactions, 26:643-657.

Dalal V & Tripathy B (2018) Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage. Scientific Reports, 8:5955.

Draye X, Lecompte F & Pagès L (2005) Distribution of banana roots in time and space: New tools for an old science. In: DW Turner & FE Rosales (Eds.) Banana Root System: Towards a better understanding for its productive management. Costa Rica, Bioversity International. p.58-74.

Du Jardin P (2015) Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196:03-14.

DꞌAddazio V, Silva JVG, Jardim AS, Longue LL, Santos RA, Fernandes AA, Silva MB, Silva DM, Santos TA, Schmildt ER, Pfenning LH & Falqueto AR (2020) Silicon improves the photosynthetic performance of black pepper plants inoculated with Fusarium solani f. sp. piperis. Photosynthetica, 58:692-701.

Elsayed TR, Jacquiod S, Nour EH, Sørensen SJ & Smalla K (2020) Biocontrol of bacterial wilt disease through complex interaction between tomato plant, antagonists, the indigenous rhizosphere microbiota, and Ralstonia solanacearum. Frontiers in Microbiology, 10:2835.

Fan X, Lin W, Liu R, Jiang N & Cai K (2018) Physiological response and phenolic metabolism in tomato (Solanum lycopersicum) mediated by silicon under Ralstonia solanacearum infection. Journal of Integrative Agriculture, 17:2160-2171.

Genin S (2010) Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. The New Phytologist, 187:920-928.

He LY, Sequeira L & Kelman A (1983) Characteristics of Strains of Pseudomonas solanacearum from China. Plant Disease, 67:1357.

Jiang N, Fan X, Lin W, Wang G & Cai K (2019) Transcriptome analysis reveals new insights into the bacterial wilt resistance mechanism mediated by silicon in tomato. International Journal of Molecular Sciences, 20:761.

Li A, Sun X & Liu L (2022) Action of salicylic acid on plant growth. Frontiers in Plant Science, 13:878076.

Lu H, Lema AS, Planas-Marquèz M, Alonso-Díaz A, Valls M & Sánchez-Coll N (2018) Type III Secretion-dependent and -independent phenotypes caused by Ralstonia solanacearum in Arabidopsis roots. Molecular Plant-Microbe Interactions, 31:175-184.

Mateus-Cagua D & Rodríguez-Yzquierdo G (2019) Effect of biostimulants on dry matter accumulation and gas exchange in plantain plants (Musa AAB). Revista Colombiana de Ciencias Hortícolas, 13:151-160.

Mimouni H, Wasti S, Manaa A, Gharbi E, Chalh DA, Vandoorne B & Ben Ahmed H (2016) Does Salicylic Acid (SA) Improve tolerance to salt stress in plants? A study of SA effects on tomato plant growth, water dynamics, photosynthesis, and biochemical parameters. OMICS: A Journal of Integrative Biology, 20:180-190.

Nansamba M, Sibiya J, Tumuhimbise R, Karamura D, Kubiriba J & Karamura E (2020) Breeding banana (Musa spp.) for drought tolerance: A review. Plant Breeding, 139:685-696.

Narasimhamurthy K, Soumya K, Udayashankar AC, Srinivas C & Niranjana SR (2019) Elicitation of innate immunity in tomato by salicylic acid and Amomum nilgiricum against Ralstonia solanacearum. Biocatalysis and Agricultural Biotechnology, 22:101414.

Parađiković N, Teklić T, Zeljković S, Lisjak M & Špoljarević M (2019) Biostimulants research in some horticultural plant species – A review. Food and Energy Security, 8:e00162.

Ramírez M, Neuman BW & Ramírez CA (2020) Bacteriophages as promising agents for the biological control of Moko disease (Ralstonia solanacearum) of banana. Biological Control, 149:104238.

Rouphael Y & Colla G (2020) Toward a sustainable agriculture through plant biostimulants: From experimental data to practical applications. Agronomy, 10:1461.

Sayago P, Juncosa F, Albarracín Orio AG, Luna DF, Molina G, Lafi J & Ducasse DA (2020) Bacillus subtilis ALBA01 alleviates onion pink root by antagonizing the pathogen Setophoma terrestris and allowing physiological status maintenance. European Journal of Plant Pathology, 157:509-519.

Simko I & Piepho HP (2012) The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology, 102:381-389.

Singh D, Yadav D, Chaudhary G, Rana V & Sharma RK (2016) Potential of Bacillus amyloliquefaciens for biocontrol of bacterial wilt of tomato incited by Ralstonia solanacearum. Journal of Plant Pathology & Microbiology, 7:327.

Song A, Li P, Fan F, Li Z & Liang Y (2014) The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. Plos One, 9:e113782.

Tan S, Gu Y, Yang C, Dong Y, Mei X, Shen Q & Xu Y (2016) Bacillus amyloliquefaciens T-5 may prevent Ralstonia solanacearum infection through competitive exclusion. Biology and Fertility of Soils, 52:341-351.

Vailleau F & Genin S (2023) Ralstonia solanacearum: An arsenal of virulence strategies and prospects for resistance. Annual Review of Phytopathology, 61:25-47.

Vargas CD, Soto-Suárez M & Zuluaga P (2023) Screening for resistance against Ralstonia Solanacearum in commercially available Colombian potato varietiest. Ciencia y Tecnología Agropecuaria, 24:e2976.

Wang Z, Luo W, Cheng S, Zhang H, Zong J & Zhang Z (2023) Ralstonia solanacearum–A soil borne hidden enemy of plants: Research development in management strategies, their action mechanism and challenges. Frontiers in Plant Science, 14:1141902.

Wang Z, Li GF, Sun H, Ma L, Guo Y, Zhao Z, Gao H & Mei L (2018) Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7:bio035279.

Xue H, Lozano-Durán R & Macho AP (2020) Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum. Plants, 9:516.

Zhang Y, Liang Y, Zhao X, Jin X, Hou L, Shi Y & Ahammed GJ (2019) Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy, 9:733.

Zhang Y, Shi Y, Gong H, Zhao H, Li H, Hu Y & Wang Y (2018) Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress. Journal of Integrative Agriculture, 17:2151-2159.

Zhao C, Wang H, Lu Y, Hu J, Qu L, Li Z, Wang D, He Y, Valls M, Coll NS, Chen Q & Lu H (2019) Deep sequencing reveals early reprogramming of Arabidopsis root transcriptomes upon Ralstonia solanacearum infection. Molecular Plant-Microbe Interactions, 32:813-827.

Zheng X, Zhu Y, Liu B, Lin N & Zheng D (2017) Invasive properties of Ralstonia solanacearum virulent and avirulent strains in tomato roots. Microbial Pathogenesis, 113:144-151.

Zuur A, Ieno EN, Walker N, Saveliev AA & Smith GM (2009) Mixed effects modelling for nested data. In: Zuur A, Ieno EN, Walker N, Saveliev AA & Smith GM (Eds.) Mixed Effects Models and Extensions in Ecology with R. Berlin, Springer-Verlag. p.101-139.

Downloads

Publicado

2025-06-03

Como Citar

Mayerly Mateus-Cagua, D., González-Almario, A., Betancourt-Vásquez, M., & Rodríguez-Yzquierdo, G. A. (2025). Physiological response induced by biostimulants on plantain plants (Musa AAB) under Ralstonia solanacearum race 2 stress. Revista Ceres, 71, e71019. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/7925

Edição

Seção

PHYSIOLOGY AND MORPHOLOGY APPLIED TO AGRICULTURE