Nanocrystals spraying interval for the control of tomato bacterial spot caused by Xanthomonas hortorum pv. gardneri
Palavras-chave:
disease, nanoparticle, severity, Solanum lycopersiconResumo
Tomato bacterial spot caused by Xanthomonas hortorum pv. gardneri triggers significant losses in crop production, and the active ingredients availability for disease control is limited. For this reason, there is a great demand for plant protection alternatives, such as the use of nanocrystals. Thus, the aim of this work was to evaluate the performance of nanocrystals spraying intervals for the control of tomato bacterial spot. Tomato plants of cv. Santa Cruz Kada were sprayed at 3-4 leaf stage under greenhouse conditions with ZnO:1Mg, ZnOCl, and ZnOCl:0.1Cu nanocrystals, copper and water. Three days later, the plants were inoculated with a bacterial suspension (109 CFU mL -1). Then, after 3, 6, 9, or 12- day intervals, the plants were sprayed with the products. The bacterial spot severity was periodically quantified as affected leaf area percentage, and the area under the disease progress curve was calculated. Nanocrystals ZnO:1Mg, ZnOCl, and ZnOCl:0.1Cu reduced the tomato bacterial spot severity when sprayed at 3- and 6-day intervals. Thus, nanocrystals may be used for the tomato bacterial spot control when sprayed at 6-day intervals, once this interval is adequate and practical for disease management.
Referências
Allaker RP (2010) The use of nanoparticles to control oral biofilm formation. Journal of Dental Research, 89:1175-1186.
Araújo ER, Costa JR, Ferreira MASV & Quezado-Duval AM (2017) Widespread distribution of Xanthomonas perforans and limited presence of X. gardneri in Brazil. Plant Pathology, 66:159-168.
Araújo VC & Tebaldi ND (2019) Intervalo de aplicação de óleos essenciais no controle da mancha bacteriana do tomateiro. Summa Phyotopathologica, 45:210-212.
Areas MS, Gonçalves RM, Soman JM, Souza Filho RC, Gioria R, Silva Junior TAC & Maringoni AC (2018) Resistance of Xanthomonas euvesicatoria strains from Brazilian pepper to copper and zinc sulfates. Anais da Academia Brasileira de Ciências, 90:2375-2380.
Callister Júnior WD (2002) Ciência e Engenharia dos Materiais: Uma introdução. 5ª ed. Rio de Janeiro, LTC. 589p.
Constantin EC, Cleenwerck I, Maes M, Baeyen S, van Malderghem C, de Vos P & Cottyn B (2016) Genetic characterization of strains named as Xanthomonas axonopodis pv. dieffenbachiae leads to a taxonomic revision of the X. axonopodis species complex. Plant Pathology, 65:792-806.
Ferreira DF (2019) Sisvar: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria 37:529-535.
Fraga FS, Silva ACA, Dantas NO, Tebaldi ND & Luz JMQ (2021) Doped zinc-oxide nanocrystals for the control of tomato bacterial spot and Xanthomonas gardneri in seeds. Tropical Plant Pathology, 46:406-413.
Gomaa EZ (2017) Silver nanoparticles as an antimicrobial agent: A case study on Staphylococcus aureus and Escherichia coli as models for Gram-positive and Gram-negative bacteria. The Journal of General and Applied Microbiology, 63:36-43.
Graham JH, Johnson EG, Myers ME, Young M, Rajasekaran P, Das S & Santra S (2016) Potential of nano-formulated zinc oxide for control of citrus canker on grapefruit trees. Plant Disease, 100:2442-2447.
Imada K, Sakai S, Kajihara H, Tanaka S & Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65:551-560.
Itako AT, Tolentino Júnior JB, Silva Júnior TAFS, Soman JM & Maringoni AC (2012) Efeito de produtos químicos sobre a mancha bacteriana (Xanthomonas perforans) e na ativação de proteínas relacionadas à patogênese em tomateiro. Idesia, 30:85-92.
Jones JB, Lacy GH, Bouzar H, Stall RE & Schaad NW (2004) Reclassification of the Xanthomonads associated with bacterial spot Disease of tomato and pepper. Systematic and Applied Microbiology, 27:755-762.
Kado CI & Heskett MG (1970) Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology 60:969-976.
Koenraadt H, Van Betteray B, Germain R, Hiddink G, Jones JB, Oosterhof J, Rijlaarsdam A, Roorda P & Wouldt B (2009) Development of specific primers for the molecular detection of bacterial spot of pepper and tomato. Acta Horticulturae, 808:99-102.
Kurozawa C & Pavan MA (2005) Doenças do tomateiro (Lycopersicon esculentum Mill.). In: Kimati H, Amorim L, Rezende JAM, Bergamim Filho A & Camargo LEA (Eds.) Manual de Fitopatologia: Doenças das plantas cultivadas. 4ª ed. São Paulo, Agronômica Ceres.p.607-626.
Mamede MC, Mota RP, Silva ACA & Tebaldi ND (2022) Nanoparticles in inhibiting Pantoea ananatis and control maize white spot. Ciência Rural, 52:e20210481.
MAPA - Ministério da Agricultura, Pecuária e Abastecimento (2022) Agrofit: Sistema de Agrotóxicos Fitossanitários. Available at: <http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons>. Accessed on: January 20th, 2020.
Mello SCM, Takatsu A & Lopes CA (1997) Escala diagramática para avaliação da mancha-bacteriana do tomateiro. Fitopatologia Brasileira, 22:447-448.
Morinière L, Burlet A, Rosenthal ER, Nesme X, Portier P, Bull CT, Lavire C, Fischer-Le Saux M & Bertolla F (2020) Clarifying the taxonomy of the causal agent of bacterial leaf spot of lettuce through a polyphasic approach reveals that Xanthomonas cynarae Trébaol et al. 2000 emend. Timilsina et al. 2019 is a later heterotypic synonym of Xanthomonas hortorum Vauterin et al. 1995. Systematic and Applied Microbiology, 43:126087.
Nascimento AR, Fernandes PM, Borges LC, Moita AW & Quezado-Duval AM (2013) Controle químico da mancha bacteriana do tomate para processamento industrial em campo. Horticultura Brasileira, 31:15-24.
Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M & Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano, 7:8972-8980.
Oliveira NS, Silva ACA, Tebaldi ND (2023) Simonkolleite nanoparticles for seed treatment and control of tomato bacterial spot caused by Xanthomonas hortorum pv. gardneri. Ciência e Agrotecnologia, 47:e000623.
Paret ML, Vallad GE, Averett DR, Jones JB & Olson SM (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato. Phytopathology, 103:228-236.
Rai M (2013) Nanobiotecnologia verde: biossínteses de nanopartículas metálicas e suas aplicações como nanoantimicrobianos. Ciência e Cultura, 65:44-48.
Shaner G & Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 66:1051-1056.
Silva ACA, Zóia MAP, Correia LIV, Azevedo FVPV, Paula AT, Maia LP, Carvalho LS, Carvalho LN, Costa MPC, Giaretta LC, Rodrigues RS, Ávila VM, Goulart LR & Dantas NO (2018) Biocompatibility of doped semiconductors nanocrystals and nanocomposites. In: Celik TA (Ed.) Cytotoxicity. London, InTech. p.149-161.
Strayer A, Ocsoy I, Tan W, Jones JB & Paret ML (2016) Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Disease, 100:1460-1465.
Wang B, Zhang Y, Mao Z, Yu D & Gao C (2014) Toxicity of ZnO nanoparticles to macrophages due to cell uptake and intracellular release of zinc ions. Journal of Nanoscience and Nanotechnology, 14:5688-5696.
Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Internacional Journal of Inorganic Materials, 3:643-646.
Zaleska A (2008) Doped-TiO2: A Review. Recent Patents on Engineering, 2:157-164.
Zhang Y, Nayak TR, Hong H & Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Current Molecular Medicine, 13:1633-1645.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.