Economic feasibility of Gluconacetobacter diazotrophicus in carrot cultivation

Autores

  • Nelson Ceballos-Aguirre Universidad de Caldas
  • Gloria María Restrepo Universidad Católica de Manizales
  • Alejandro Hurtado-Salazar Universidad de Pamplona
  • Jorge Andrés Cuellar Universidad Autónoma de Manizales
  • Óscar Julián Sánchez Universidad de Caldas

Palavras-chave:

diazotrophic bacteria, plant growth promoter, benefit / cost ratio

Resumo

The inclusion of more sustainable alternatives such as bacterial inoculants is a viable option for the competitiveness of vegetable crops in tropical countries such as Colombia. The economic feasibility of a bacterial suspension of G. diazotrophicus applied to the carrot crop was determined. The native isolate G. diazotrophicus GIBI029 was evaluated and the strain ATCC 49037 was used as a control. The experiment was installed in a subdivided plot design, where the plot was the bacterium G. diazotrophicus (ATCC49037 and GIBI029. The subplot was the concentration of G. diazotrophicus (88×106 CFU/mL and 18×107 CFU/mL) and, in it, the levels of nitrogen and phosphorus (0% and 100% nitrogen and phosphorus) were assorted. The average weight of the carrot (g) and the yield by quality of the consuming organ (kg/ha) were evaluated. Through the production cycle, fixed, variable, and total costs were calculated. Benefit / cost ratios higher than 1.46 and net income up to US$ 10,817/ha were achieved. It is possible to efficiently and economically use the native isolate G. diazotrophicus GIBI029 in the search for more sustainable and competitive cultural practices.

Referências

Agronet (2020) Cifras Agropecuarias. Available at: http:// www.agronet.gov.co/Paginas/estadisticas.aspx. Accessed on: January 16th, 2020.

Ahmad I, Altaf MM, Sharma J & Al-thubiani AS (2016) Diversity, Quorum Sensing, and Plant Growth Promotion by Endophytic Diazotrophs Associated with Sugarcane with Special Reference to Gluconacetobacter diazotrophicus. In: Choudhary D, Varma A & Tuteja N (Eds.) Plant-Microbe Interaction: An Approach to Sustainable Agriculture. Springer, Singapore. p.1-23.

Arbelaez L, Rivera J, Hurtado-Salazar A & Ceballos-Aguirre N (2016) Technical and Economic Evaluation of Three Types of Tomato Nutrient Solutions under Semi-Controlled Conditions. Journal of Agricultural Science, 8:68-78.

ATCC (2020) Search by Keyword. Available on: https:// www.atcc.org/search#q=Gluconacetobacter%20diazotrophicus&sort=relevancy.Accessed on: January 16th, 2020.

Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI & Passaglia LM (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Applied Soil Ecology, 63:94-104.

Boskovic-Rakocevic L, Rados P, Jasmina Z, Milan Z, Nenad P & Milena D (2012) Effect of nitrogen fertilization on carrot quality. African journal of agricultural research, 7:2884-2900.

Corabastos (2020) Precio Promedio Anual por Producto. Available at: https://www.corabastos.com.co/index.php/features/servicios-web/historico-de-precios. Accessed on: January 20th, 2020.

Cruz-Tobar E, Vega-Chariguamán J, Albán A, Gonzalez M, Saltos-Espín R & González-Rivera V (2018) Aplicación de abonos orgánicos en la producción de zanahoria (Daucus carota L.). Revista de Investigación Talentos, 5:26-35.

DANE (2017) Características relevantes en el cultivo de la zanahoria (Daucus carota L.) en Colombia y estudios de caso sobre costos de producción en los municipios de Madrid (Cundinamarca) y Ventaquemada (Boyacá). Available at: <https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_jun_2017.pdf. Accessed on: July 24th, 2020.

Dibut B, Martínez R, Ríos Y, Plana L, Rodríguez J, Ortega M & Tejada G (2010) Estudio de la asociación Gluconacetobacter diazotrophicus-viandas tropicales en suelo ferralítico rojo. I. selección de cepas efectivas para la biofertilización de boniato, yuca y malanga. Cultivos Tropicales, 31:51-57.

Eshaghi E, Nosrati R, Owlia P, Malboobi MA, Ghaseminejad P & Ganjali MR (2019) Zinc solubilization characteristics of efficient siderophore-producing soil bacteria. Iran J Microbiol, 11:419-430.

Faostat (2020) Crops. Available at: http://www.fao.org/faostat/en/#data/QC. Accessed on: July 24th, 2020.

Fernández-Delgado J, Abad-Rodríguez EM & Salgado-Pulido JM (2019) Efecto de Gluconacetobacter diazotrophicus en el cultivo del tomate (Solanum lycopercicum L.). Avances, 21:264-275.

Ferreira CMH, Helena MVM, Soares E & Soares V (2019) Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Science of the Total Environment, 682:779-799.

Figueroa-Viramontes U, Delgado JA, Cueto-Wong JA, Núñez-Hernández G, Reta-Sánchez DG & Barbarick KA (2011) A new Nitrogen Index to evaluate nitrogen losses in intensive forage systems in Mexico. Agriculture, Ecosystems & Environment, 142:352-364.

Herrera H, Hurtado-Salazar A & Ceballos-Aguirre N (2016) Estudio técnico y económico del tomate tipo cereza élite (Solanum lycopersicum L. var. cerasiforme) bajo condiciones semicontroladas. Revista Colombiana de Ciencias Hortícolas, 9:290-300.

Paredes-Villanueva JJ, Rosario JL, Urcia-Pulido MM & Zavaleta-Armas, JC (2020) Plant growth promoter collection of Gluconacetobacter diazotrophicus from the northern coast of Peru. Scientia Agropecuaria, 11:15-21.

Restrepo GM (2014) Obtención y evaluación de un preparado líquido como promotor del crecimiento de cultivos de tomate (Solanum lycopersicum L.) empleando la bacteria Gluconaceto-bacter diazotrophicus. PhD Thesis. Universidad de Caldas, Manizales. 155p.

Restrepo GM, Sanchez OJ, Marulanda, SM, Galeano NF &Taborda G (2017) Evaluation of plant-growth promoting properties of Gluconacetobacter diazotrophicus and Gluconacetobacter sacchari isolated from sugarcane and tomato in West Central region of Colombia. African Journal of Biotechnology, 16:1619-1629.

Sadeghi K & Khodakaramian G (2020) Characteristics and Ice Nucleation Activity of Sugarcane Epiphytic and Endophytic Bacteria and Their Role in Host Frostbite. Sugar Tech, 22:291–302.

Santos SG, Chaves VA, Ribeiro FS, Alves GC & Reis VM (2019) Rooting and growth of pre-germinated sugarcane seedlings inoculated with diazotrophic bacteria. Applied Soil Ecology, 133:12-23.

Silva M, Souza MS, Oliveira IB, Daniel O, Santos SA, Marques MR & Silva WM (2016) Influence of Flood Areas on the Number of Diazotrophic Bacteria from Pasture Grasses. Applied Ecology and Environmental Sciences, 4:84-88.

Szel1g-Sikora A, Sikora J, Niemiec M, Gródek-Szostak Z, Kapusta-Duch J, Kuboñ M, Komorowska M & Karcz J (2019) Impact of Integrated and Conventional Plant Production on Selected Soil Parameters in Carrot Production. Sustainability, 11:5612.

Universidad de Caldas (2014) Sistema de Granjas – Granja Tesorito. Available at: http://www.ucaldas.edu.co/portal/?s=sistema+granjas&x=0&y=0. Accessed on: July 24th, 2020.

Vejan P, Abdullah R, Khadiran T, Ismail S & Nasrulhaq Boyce A (2016) Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability - A Review. Molecules, 21:573.

Downloads

Publicado

2025-05-21

Como Citar

Ceballos-Aguirre, N., Restrepo, G. M., Hurtado-Salazar, A., Cuellar, J. A., & Sánchez, Óscar J. (2025). Economic feasibility of Gluconacetobacter diazotrophicus in carrot cultivation. Revista Ceres, 69(1), 40–47. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/7936

Edição

Seção

CROP PRODUCTION

Artigos mais lidos pelo mesmo(s) autor(es)