Gas exchange and water stress index in soybean cultivated under water deficit and soil compaction
Palavras-chave:
Glycine max (L.) Merrill, bulk density, crop water stress, deficit irrigation, photosynthesisResumo
Water stress is intrinsically related to soil water availability which is determinant in gas exchanges, as well as soil compaction in soybean growth and development. This study aimed to evaluate the leaf gas exchange, water stress index, and dry mass accumulation of soybean cultivated in different daily irrigation depths and bulk density. The treatments were distributed in pots subdivided in a 4×4 factorial scheme: four levels of bulk density of the soil (1.0, 1.15, 1.30 and 1.45 g cm-3) and four daily irrigation depths (4.0, 5.0, 6.0- and 7.0-mm day-1), with three replications. Physiological and morphological variables were analyzed. There were low transpiration rates due to water deficit in the 4 mm daily irrigation depth that resulted in stomatal closure and impaired the performance of the photosynthetic process in soybean. The increase in soil density provided gains in shoot and dry root mass in the layer above the compacted one. Low availability of water in the soil reduces the photosynthesis and growth of soybean plants. Increase in bulk density of the soil promotes greater root development, with the layer above the compacted being the one that concentrates most of the roots.
Referências
Bengough AG, McKenzie BM, Hallett PD & Valentine TA (2011) Root elongation, water stress, and mechanical impedance: A review of limiting stresses and beneficial root tip traits. Journal of Experimental Botany, 62:59–68.
Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Research, 112:119-123.
Brevedan RE & Egli DB (2003) Short periods of water stress during seed filling, leaf senescence, and yield of soybean. Crop Science, 43:2083-2088.
Buttery BR, Tan CS, Drucy CF, Park SJ, Armstrong RJ & Park KY (1998) The effects of soil compaction, soil moisture and soil type on growth and nodulation of soybean and common bean. Canadian Journal of Plant Science, 78:571–576.
Candogan BN, Sincik M, Buyukcangaz H, Demirtas C, Goksoy AT & Yazgan S (2013) Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions. Agricultural Water Management, 118:113–121.
Catuchi TA, Guidorizzi FVC, Guidorizi KA, Barbosa AM & Souza GM (2012) Respostas fisiológicas de cultivares de soja à adubação potássica sob diferentes regimes hídricos. Pesquisa Agropecuária Brasileira, 47:519-527.
Chavarria G, Durigon MR, Klein VA & Kleber H (2015) Restrição fotossintética de plantas de soja sob variação de disponibilidade hídrica. Ciência Rural, 45:1387-1393.
Farias JRB, Nepomuceno AL & Neumaier N (2007) Ecofisiologia da soja. Londrina, Embrapa Soja. 8p. (Circular, 48).
Franchini JC, Debiasi H, Balbinot Junior AA, Tonon BC, Farias JRB, Oliveira MCN & Torres E (2012) Evolution of crop yields in different tillage and cropping systems over two decades in southern Brazil. Field Crops Research, 137:178–185.
Franchini JC, Debiasi H, Sacoman A, Nepomuceno A & Farias JRB (2009) Manejo do solo para redução das perdas de produtividade pela seca. Londrina, Embrapa Soja. 39p. (Documentos 314).
Gonçalves WG, Jimenez RL, Araújo Filho JV, Assis RL, Silva GP & Pires FR (2006) Sistema radicular de plantas de cobertura sob compactação do solo. Engenharia Agrícola, 26:67-75.
Gunes A, Pilbeam DJ, Inal A, Bagci EG & Coban S (2008) Influence of silicon on antioxidant mechanisms and lipid peroxidation in chickpea (Cicer arietinum L.) cultivars under drought stress. Journal of Plant Interactions, 2:105-113.
Hamza MA & Anderson WK (2005) Soil compaction in cropping systems, a review of the nature, causes and possible solutions. Soil and Tillage Research, 82:121-145.
Han H, Ren Y, Gao C, Yan Z & Li Q (2018) Response of winter wheat grain yield and water use efficiency to deficit irrigation in the North China. Plain, 29:971–977.
Hébrard O, Voltz M, Andrieux P & Moussa R (2006) Spatio- temporal distribution of soil surface moisture in a heteroge- neously farmed Mediterranean catchment. Journal of Hydrology, 329:110-121.
Hepworth C, Doheny-Adams T, Hunt L, Carmeron D & Gray JE (2015) Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytologist, 208:336–341.
Idso SB, Jackson RD, Pinter PJ, Reginato RJ & Hatfield JL (1981) Normalizing the stress degree-day for environmental variability. Agric. Meteorol, 24:45–55.
Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R & Panneerselvam R (2009) Drought stress in Plants: A review on Morphological Characteristics and Pigments Composition. International Journal of Agriculture and Biology, 11:100-105.
Jin K, Shen J, Ashton RW, Dodd IC, Parry MAJ & Whalley WR (2013) How do roots elongate in a structured soil? Journal of Experimental Botany, 64:4761–4777.
Kerbauy GB (2008) Fisiologia vegetal. 2nd ed. Rio de Janeiro, Guanabara Koogans. 431p.
Kirnak H, Dogan H & Turkoglu H (2010) Effect of drip irrigation intensity on soybean seed yield and quality in the semiarid Harran plain, Turkey. Spanish Journal of Agricultural Research, 8:1208-1217.
Kuncoro PH, Koga K, Satta N & Muto Y (2014). A study on the effect of compaction on transport properties of soil gas and water. II: Soil pore structure indices. Soil and Tillage Research, 143:180–187.
Lei W, Tong Z & Shengyan D (2006) Effect of drought and rewatering on photosynthetic physioecological characteristics of soybean. Acta Ecologica Sinica, 26:2073-2078.
Lipiec J, Horn RF, Pietrusiewicz J & Siczek A (2012) Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil and Tillage Research, 121:74-81.
Machado Júnior CS, Silva CR, Sanches MC, Hamawaki OT & Sousa LB (2017) Physiologic parameters of soybean of determinate and indeterminate growth habit subjected to levels of soil moisture. Pesquisa Agropecuária Brasileira, 52:419-425.
Malavolta E (1980) Elementos de nutrição mineral de plantas. Piracicaba, Agronômica Ceres. 251p.
Marenco RA, Antezana-Vera SA, Gouvêa PRDS, Camargo MAB, Oliveira MFD & Santos JKDS (2014) Fisiologia de espécies florestais da Amazônia: fotossíntese, respiração e relações hídricas. Revista Ceres, 61:786-799.
Modolo AJ, Fernandes HC, Schaefer CEG & Silveira JCM (2008) Efeito da compactação do solo sobre a emergência de plântulas de soja em sistema plantio direto. Ciência e Agrotecnologia, 32:1259-1265.
Moraes MT, Debiase H, Carlesso R, Franchini J & Silva VR (2014) Critical limits of soil penetration resistance in a rhodic Eutrudox. Revista Brasileira de Ciência do Solo, 38:288-298.
Moraes MT, Bertollo AM, Debiasi H, Franchini JC, Levien R & Mazurama M (2015) SPD e a disponibilidade hídrica em solos argilosos. Agranja, 791:58-59.
Moraes MT, Debiase H, Carlesso R, Franchini JC, Silva VR & Luz FB (2016) Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil and Tillage Research, 155:351–362.
Munawarti A, Taryono T, Semiarti E & Sismindari S (2014) Morphological and biochemical responses of glagah (Saccharum spontaneum L.) Accessions to Drought Stress. Journal of Tropical Life Science, 4:61-66.
Ohashi Y, Nakayama N & Fujita K (2006) Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants. Biologia Plantarum, 50:138-141.
R Development Core Team (2020) R: A Language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: Accessed on: January 25th, 2020. 25 de janeiro de 2020.
Rhine MD, Stevens G, Shannon G, Wrather A & Sleper D (2009) Yield and nutritional responses to waterlogging of soybean cultivars. Irrigation science, 28:134-142.
Ribas-Carbo M, Taylor NL, Giles L, Busquets S, Finnegan PM, Day AD, Lambers H, Medrano H, Berry JA & Flexas J (2005) Effects of water stress on respiration in soybean leaves. Plant Physiology, 139:466-473.
Richart A, Tavares Filho J, Brito OR, Llanillo, RF & Ferreira R (2005) Compactação do solo: causas e efeitos. Semina, 26:321-344.
Santos GA, Dias Júnior MS, Guimarãres PTG & Furtini Neto AE (2005) Diferentes graus de compactação e fornecimento de fósforo influenciando no crescimento de plantas de milho (Zea mays L.) cultivadas em solos distintos. Ciência e Agrotecnologia, 29:740-752.
Silva VR, Reichert AM, Reinert DJ & Bortoluzzi EC (2009) Soil water dynamics related to the degree of compaction of two brazilian oxisols under no-tillage. Revista Brasileira de Ciência do Solo, 33:1097-1104.
Sincik M, Candogan BN, Demirtas C, Buyukcangaz H, Yazgan S & Goksoy AT (2008) Deficit irrigation of soya bean [Glycine max (L.) Merr.] in a sub-humid climate. Journal of Agronomy and Crop Science, 194:200-205.
Stiller I, Dulai S, Kondrák M, Tarnai R, Szabó L, Toldi O & Bánfalvi Z (2008) Effects of drought on water content and photosynthetic parameters in potato plants expressing the trehalose-6-phosphate synthase gene of Saccharomyces cerevisiae. Planta, 227:299-308.
Stolf-Moreira R, Medri ME, Neumaier N, Lemos NG, Brogin RL, Marcelino FC, Oliveira MCN, Farias JRB, Abdelnoor RV & Nepomuceno AL (2010) Cloning and quantitative expression analysis of drought-induced genes in soybean. Genetics and Molecular Research, 9:858-867.
Taiz L & Zeiger E (2017) Fisiologia Vegetal. 6th ed. Porto Alegre, Artmed. 858p.
Tardieu F (2013) Plant response to environmental conditions: assessing potential production, water demand and negative effects of water deficit. Frontiers in physiology, 4:17.
Torres E & Saraiva OF (1999) Camadas de impedimento mecânico do solo em sistemas agrícolas com a soja. Londrina, Embrapa-CNPSo. 58p. (Circular, 23).
Valentine TA, Hallett PD, Binnie K, Young MW, Squire GR, Hawes C & Bengough AG (2012) Soil strength and macropore volume limit root elongation rates in many UK agricultural soils. Annals of Botany, 110:259-270.
Waller P & Yitayew M (2016) Irrigation and Drainage Engineering. Springer International Publishing, Heidelberg, 1st ed. Nova Deli, Springer. 742p.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.