Silicon absorption by plants in response to the environment

Autores

  • Sâmia Paiva de Oliveira Moraes UFC
  • Bruno Sousa de Menezes UFC
  • Francisca Soares Araújo UFC
  • Maria Eugenia Ortiz Escobar UFC
  • Teogenes Senna de Oliveira UFV

Palavras-chave:

water stres, temperature, phenotypic plasticity, acclimatisation, relief

Resumo

Despite the importance given to Silicon in the relief of stress in cultivated plants, there are no experimental studies on abiotic stresses that address this function of Si in plants under natural environments, aiming to identify responses that would indicate acclimatisation to the conditions at their place of origin. The goal of this study was to answer the following questions: 1) Does abiotic stress increase Si absorption? 2) Does the presence of Si stimulate biomass production in natural environments? and 3) Do plants from different environments display differences in Si absorption? To do so, Eugenia punicifolia was selected as a study species since it has a wide distribution, occurring in three different physiognomies: Coastal Savanna, Dense Deciduous Shrubland and Seasonal Deciduous Forest. The Si absorption varied depending on the temperature and this was directly related to increases in dry matter production in E. punicifolia plants, suggesting that this may be a relief mechanism for temperature and water stresses. Differences in the response to stress conditions may be a result of the phenotypic plasticity which occurs in E. punicifolia and suggests that plasticity could be a useful asset in the use of Si fertilizer for crops.

Referências

Alstad AO, Damschen EI, Givnish TJ, Harrington JA, Leach MK, Rogers DA & Waller DM (2016) The pace of plant community change is accelerating in remnant prairies. Science Advances, 2:e1500975.

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM & Sparovek G (2014) Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22:711-728.

Amin M, Ahmad R, Basra SMA & Murtaza G (2014) Silicon induced improvement in morpho-physiological traits of maize (zea mays l.) under water deficit. Pakistan Journal of Agricultural Sciences, 51:187-196.

Arantes AA & Monteiro R (2002) A família Myrtaceae na Estação Ecológica do Panga, Uberlândia, Minas Gerais, Brasil. Lundiana, 3:111-127.

Balakhnina T & Borkowska A (2013) Effects of silicon on plant resistance to environmental stresses: review. International Agrophysics, 27:225-232.

Bita CE & Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science, 4:273.

Brasil (1992) Regras para análise de sementes. Ministério da Agricultura e Reforma Agrária. Brasília: SNDA/DNDV/CLAV. Available at: www.agricultura.gov.br/ark_editor_file_2946_regras_analises__sementes.pdf. Accessed on: September 06th, 2017.

Carneiro JMT (2007) A versatile flow injection system for spectrophotometric determination of silicon in agronomic samples. Communications in Soil Science and Plant Analysis, 38:1411-1423.

Castro ASF, Moro MF & Menezes MOT (2012) O Complexo Vegetacional da Zona Litorânea no Ceará: Pecém, São Gonçalo do Amarante. Acta Botânica Brasilica, 26:108-124.

Chang S, Zhang L, Clausen S & Feng Q (2020) Source of silica and silicification of the lowermost Cambrian Yanjiahe formation in the three gorges area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 548:109697.

Conceição GM & Aragão JG (2010) Diversidade e importância econômica das Myrtaceae do Cerrado, Parque Estadual do Mirador, Maranhão. Scientia Plena, 6:079901.

Cooke J & Leishman MR (2011) Is plant ecology more siliceous than we realise? Trends in Plant Science, 16:06-08.

Coskun D, Britto DT, Huynh WQ & Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Frontiers in Plant Science, 7:1072.

Embrapa (1997) Manual de métodos de análise de solos. Brasília, Embrapa Solos. 212p.

Epstein E (1999) Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, 50:641-664.

Etesami H & Jeong BR (2018) Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147:881-896.

Fabris LC & César O (1996) Estudos florísticos em uma mata litorânea no sul do estado do Espírito Santo. Boletim do Museu de Biologia Mello Leitão, 5:15-46.

Fauteux F, Rémus-Borel W, Menzies JG & Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiological Letters, 249:01-06.

Gaur S, Kumar J, Kumar D, Chauhan DK, Prasad SM & Srivastava PK (2020) Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicology and Environmental Safety, 202:110885.

Guy C (1999) Molecular responses of plants to cold shock and cold acclimation. Journal of Molecular Microbiology and Biotechnology, 1:231-242.

Hattori T, Inanaga S, Araki H, An P, Morita S, Luxov´a M & Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiology Plantarumm, 123:459-466.

Herpin UVR, Cerri CC, Carvalho MCS, Markert B, Enzweiler J, Friese K, Breulmann G, Siewers U & Bernoux M (2004) Distribution and biogeochemistry of inorganic chemicals associated with forest conversion and pasture installation in Rondônia (Brasilian Amazon Basin). Tropical Ecology, 45:67-85.

Horiguchi T & Morita S (1987) Mechanism of manganese toxicity and tolerance of plants. VI. Effect of silicon on alleviation of manganese toxicity of barley. Journal of Plant Nutrition, 10:2299-2310.

IPCC (2007) Climate change 2007: the physical science basis. Cambridge, Cambridge University Press. 1009p.

IPECE - Instituto de Pesquisa e Estratégia Econômica do Ceará (2008) Perfil básico municipal: Fortaleza. Available at: <http://www.ipece.ce.gov.br/ publicacoes/perfil_basico/perfil-basico-municipal-2008>. Accessed on: September 06th, 2017.

Jacomine PKT, Cavalcanti AC, Pessôa SCP & Silveira CO (1975) Levantamento exploratório-reconhecimento de solos do estado de Alagoas. Recife, Embrapa-CPP. 532p.

Johnson CM, Stout PR, Broyer TC & Carlton AB (1957) Comparative chlorine requirement of different plant species. Plant and Soil, 8:337-353.

Korndörfer GH (2006) Elementos benéficos. In: Fernandes MS (Ed.) Nutrição mineral de plantas. Viçosa, Sociedade Brasileira de Ciência do Solo. p.355-374.

Korndörfer GH, Pereira HS & Camargo MS (2004) Silicatos de Cálcio e Magnésio na Agricultura. 3ª ed. Uberlândia, GPSi/ICIAG/UFU. 23p.

Kim YH, Khan AL, Waqas M & Lee I-J (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Frontiers in Plant Science, 8:510.

Lamarca EV, Silva CV & Barbedo CJ (2011) Limites térmicos para a germinação em função da origem de sementes de espécies de Eugenia (Myrtaceae) nativas do Brasil. Acta Botanica Brasilica, 25:293-300.

Liang Y, Sun W, Zhu YG & Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147:422-428.

Lima JR, Sampaio EVSB, Rodal MJN & Araújo FS (2011) Physiognomy and structure of a seasonal deciduous forest on the Ibiapaba plateau, Ceará, Brazil. Rodriguésia 62:379-389.

Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA & Zargar SM (2022) Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. Frontiers in Plant Science, 13:819658.

Moro MF, Castro ASF & Araújo FS (2011) Composição florística e estrutura de um fragmento de vegetação savânica sobre os tabuleiros pré-litorâneos na zona urbana de Fortaleza, Ceará. Rodriguésia, 62:407-423.

Motomura H, Mita N & Suzuki M (2002) Silica accumulation in longlived leaves of Sasa veitchii (Carrie´re) Rehder (Poaceae–Bambusoideae). Annals of Botany, 90:149-152.

Proença C (1994) Listagem comprovada das Myrtaceae do Jardim Botânico de Brasília “Check-List”. Boletim do Herbário Ezechias Paulo Heringer, 1:09-26.

Pulz AL, Crusciol CAC, Lemos LB & Soratto RP (2008) Influência de silicato e calcário na nutrição, produtividade e qualidade da batata sob deficiência hídrica. Revista Brasileira de Ciências do Solo, 2008:1651-1659.

Ramos SJ, Castro EM, Pinto SIC, Faquin V, Oliveira C & Pereira GC (2009) Uso do silício na redução da toxidez de zinco em mudas de eucalipto. Interciência, 34:189-194.

Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S & Barmukh R (2022) Advances in “Omics” Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. Frontiers in Plant Science, 12:794373.

R Development Core Team (2014) R: A Language and Environment for Statistical Computing. Available at: https://research.cbs.dk/en/publications/r-development-core-team-2014-r-a-language-and-environment-for-sta. Accessed on: September 12th, 2016.

Rocha HR, Freitas HC, Rosolem R, Juárez RIN, Tannus RN, Ligo MA, Cabral OMR & Dias MAFS (2002) Measurements of CO exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brasil. Biota Neotropica, 2:01-11.

Rodrigues RR, Morellato LPC, Joly CA & Leitão Filho HDF (1989) Estudo florístico e fitossociológico em um gradiente altitudinal de mata estacional mesófila semidecídua, na Serra do Japi, Jundiaí, SP. Revista Brasileira de Botânica, 12:71-84.

Scheiner SM (1993) Genetics and evolution of phenotypic plasticity. Annual Review of Ecology, Evolution, and Systematics, 24:35-68.

Snyder GH (1991) Development of a silicon soil test for Histosol-grown rice. Belle Glade EREC Research Report, 2:29-39.

Shen X, Zhou Y, Duan L, Li Z, Eneji AE & Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology, 167:1248-1252.

Tisdale SL, Beaton JD & Nelson WL (1985) Soil fertility and fertilizers. 4º ed. New York, Mac Millan. 754p.

Tombeur F, Lalibert’e E, Lambers H, Faucon M, Zemunik G, Turner B, Cornelis J & Mahy G (2021) A shift from phenol to silica-based leaf defences during longterm soil and ecosystem development. Ecology Letters, 24:984-995.

Turner NC (1986) Crop water deficit: a decade of progress. Advances in Agronomy, 39:01-51.

Vaculík M, Lux A Luxova´ M, Tanimoto E & Lichtscheid I (2009) Silicon mitigates cadmium inhibitory effects in youngs maize plants. Environmental and Experimental Botany, 67:52-58.

Vasconcelos SF, Araujo FS & Lopes AV (2010) Phenology and dispersal modes of wood species in the Carrasco, a tropical deciduous shrubland in the Brazilian semiarid. Biodiversidade e Conservação, 19:2263-2289.

Via S, Gomulkiewicz R, Dejong, Scheiner SM, Schlichting CD & Van Tienderen PH (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology and Evolution, 19:212-217.

Wang M, Wang R, Mur LAJ, Ruan J, Shen Q & Guo S (2021) Functions of silicon in plant drought stress responses. Horticulture Research, 8:254.

Wilkinson S & Davies W (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant and Cell Environment, 33:510-525.

Yin LN, Wang SW, Liu P, Wang WH, Cao D, Deng XP & Zhang SQ (2014) Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiology and Biochemistry, 80:268-77.

Zahra N, Hafeez MB, Shaukat K, Wahid A, Hussain S, Naseer R, Raza A, Iqbal S & Farooq M (2021) Hypoxia and Anoxia Stress: Plant responses and tolerance mechanisms. Journal of Agronomy and Crop Science, 207:249-284.

Zandalinas SI, Mittler R, Balfagón D, Arbona V & and Gómez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiology Plantarumm, 162:02-12.

Downloads

Publicado

2025-06-03

Como Citar

Paiva de Oliveira Moraes, S., Sousa de Menezes, B., Soares Araújo, F., Ortiz Escobar, M. E., & Senna de Oliveira, T. (2025). Silicon absorption by plants in response to the environment. Revista Ceres, 71, e71026. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/8006

Edição

Seção

SOIL AND PLANT NUTRITION