Phytotoxicity and physiological changes in Schinus terebinthifolius Raddi under simulated 2,4-D drift and dicamba
Palabras clave:
brazilian peppertree;, auxin mimics;, photosynthesis.Resumen
The use of auxin mimics herbicides in agriculture is widespread in a great diversity of crops. The indiscriminate use of herbicides can cause adverse effects in the plants. Among the plant species that stand out for being highly competitive and resistant to biotic and abiotic stresses, it is the brazilian peppertree (Schinus terebinthifolius Raddi.). The objective of this work was to evaluate the phytotoxic and photosynthetic alteration effects of different rates simulating the drift of the herbicides 2,4-D and Dicamba in brazilian peppertree seedlings. The experiment was carried out in a completely randomized design with four replications. The treatments were arranged in 2 x 8 factorial design (herbicide x doses). The factor herbicide consisted the herbicides 2,4-D and Dicamba, and, the factor doses eight percentages of the herbicide applied. Phytotoxicity and alteration of photosynthetic and fluorescence of chlorophyll a parameters were evaluated. Increased rate of the 2,4-D and Dicamba cause phytotoxicity to the plants, whose Dicamba promotes greater injuries. Dicamba was the herbicide that caused the greatest damage to the photosynthetic apparatus on brazilian peppertree plants, while for 2,4-D the plants showed higher recovery potential after herbicidal exposure.
Citas
Alvares CA, Stape JL, Sentelhas PC & Goncalves JLM (2013) Modeling monthly mean air temperature for Brazil. Theoretical and Applied Climatology, 113:407-427.
Araujo MM, Navroski MC, Schorn LA, Tabaldi LA, Rorato DG, Turchetto F, Zavistanovicz TC, Berghetti ÁLP, Aimi SC, Tonetto T da S, Gasparin E, Kelling MB, Ávila AL, Dutra AF, Mezzomo JC, Gomes DR, Griebeler AM, da Silva MR, Barbosa FM & de Lima MS (2018) Caracterização e análise de atributos morfológicos e fisiológicos indicadores da qualidade de mudas em viveiro florestal. In: Araujo MM, Navroski MC & Schorns LA (Eds.) Produção de sementes e mudas um enfoque à silvicultura. Santa Maria, UFSM. p.345-365.
Araus JL & Hogan KP (1994) Comparative leaf structure and patterns of photoinhibition of the neotropical palms. Scheelea zonensis and Socratea durissima growing in clearing and forest understory during the dry season in Panama. American Journal of Botany, 81:726-738.
Ashraf M & Harris PJC (2013) Photosynthesis under stressful environments: An overview. Photosynthetica, 51:163-190.
Baker NR (2008) Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59:89-113.
Barrett M, Soteres J & Shaw D (2016) Carrots and sticks: incentives and regulations for herbicide resistance management and changing behavior. Weed Science, 64:627-640.
Berghetti ALP, Araujo MM, Tabaldi LA, Rorato DG, Aimi SC & Farias JG (2019) Growth and physiological attributes of Cordia trichotoma seedlings in response to fertilization with phosphorus and potassium. Floresta, 49:133-142.
Cambrollé J, García JL, Figueroa ME & Cantos M (2015) Evaluating wild grapevine tolerance to copper toxicity. Chemosphere, 120:171-178.
Cabreira GV, Leles PS, de Araújo EJG, da Silva EV, Lisboa AC & Lopes LN (2017) Produção de mudas de Schinus terebinthifolius utilizando biossólido como substrato em diferentes recipientes e fertilizantes. Scientia Agraria, 18:30-42.
Carvalho LB, Alves PL, Bianco S & De Prado R (2012) Physiological dose response of coffee (Coffea arabica L.) plants to glyphosate depends on growth stage. Chilean Journal of Agricultural Research, 72:182-187.
Cruz MCM, Siqueira DL, Chamhum LC & Cecon PR (2009) Fluorescência da clorofila a em folhas de tangerineira ‘Ponkan’ e limeira ácida ‘Tahiti’ submetidas ao estresse hídrico. Revista Brasileira de Fruticultura, 31:896-901.
Egan JF, Barlow KM & Mortensen DA (2014a) A meta-analysis on the effects of 2, 4-D and dicamba drift on soybean and cotton. Weed Science, 62:193-206.
Egan JF, Bohnenblust E, Goslee S, Mortensen D & Tooker J (2014b) Herbicide drift can affect plant and arthropod communities. Agriculture, Ecosystems & Environment, 185:77-87.
Egan JF & Mortensen DA (2012) Quantifying vapor drift of dicamba herbicides applied to soybean. Environmental toxicology and chemistry, 31:1023-1031.
Frans RE (1972) Measuring plant response. In: Wilkinson RE (Ed.) Research methods in weed science [S.1.]. United States, Southern Weed Science Society. p.28-41.
Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Management Science, 66:113-120.
Hartzler B & Meaghan A (2018) Crop Injury Associated with Growth Regulator Herbicides. Integrated Crop Management News, 2487.
Hazrati S, Tahmasebi-Sarvestani Z, Modarres-Sanavy SAM, Mokhtassi-Bidgoli A & Nicola S (2016) Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemestry, 106:141-148.
Hensley JB, Webster EP, Blouin DC, Harrell DL & Bond JA (2012) Impact of drift rates of imazethapyr and low carrier volume on non-Clearfield rice. Weed Technology, 26:236-242.
Ismail IM, Basahi JM & Hassan IA (2014) Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt. Science of Total Environment, 497:585-593.
Jadoski SO, Klar AE & Salvador ED (2005) Relações hídricas e fisiológicas em plantas de pimentão ao longo de um dia. Ambiência, 1:11-19.
Lambrev PH, Miloslavina Y, Jahns P & Holzwarth AR (2012) On the relationship between non-photochemical quenching and photoprotection of Photosystem II. Biochimica et Biophysica Acta, 1817:760-769.
Li Q, Deng M, Xiong Y, Coombes Y & Zhao W (2014) Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis. The Scientific World Journal, http://dx.doi.org/10.1155/2014/347461.
Machado EC, Schmidt PT, Medina CL & Ribeiro RV (2005) Respostas da fotossíntese de três espécies de citros a fatores ambientais. Pesquisa Agropecuária Brasileira, 40:1161-1170.
Marcuzzo SB, Araujo MM & Gasparin E (2015) Plantio de espécies nativas para restauração de áreas em unidades de conservação: um estudo de caso no sul do Brasil. Floresta (Online), 45:129-140.
Mercier H (2004) Auxinas. In: Kerbauy GB (Ed.) Fisiologia vegetal. Rio de Janeiro, Guanabara Koogan. p.217-249.
Mohseni-Moghadam M & Doohan D (2015) Response of bell pepper and broccoli to simulated drift rates of 2, 4-D and dicamba. Weed technology, 29:226-232.
Mortensen DA, Egan JF, Maxwell BD, Ryan MR & Smith RG (2012) Navigating a critical juncture for sustainable weed management. BioScience, 62:75-84.
Pereira-Netto AB (2002) Crescimento e desenvolvimento. In: Wachowicz CM & Carvalho RIN (Eds.) Fisiologia vegetal – produção e pós-colheita. Curitiba, Champagnat. p.17-42.
Porcar-Castell E, Tyystjärvi J, Atherton C, Van DTJ, Flexas EE, Pfündel J, Moreno C & Frankenberg JA (2014) BerryLinking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany, 65:4065-4095.
Rascher U, Liebig M & Lüttge U (2000) Evaluation of instant light-responses curves of chlorophyll parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell & Environment, 23:1397-1405.
Rorato DG, Araujo MM, Tabaldi LA, Turchetto F, Griebeler AM, Berghetti AL & Barbosa FM (2017) Tolerance and resilience of forest species to frost in restoration planting in southern Brazil. Restoration Ecology, 26:01-06.
Samtani JB, Masiunas JB & Appleby JE (2008) Injury on white oak seedlings from herbicide exposure simulating drift. HortScience, 43:2076-2080.
Senseman SA (2007) Herbicide handbook. 9a ed. Lawrence, Weed Science Society of America. 458p.
Schansker G, Tóth SZ, Holzwarth AR & Garab G (2014) Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynthesis Research, 120:43-58.
Silva DR, da Silva ED, Aguiar AC, Novello B, Silva AA & Basso C (2018) Drift of 2, 4-D and dicamba applied to soybean at vegetative and reproductive growth stage. Ciência Rural, 48:https://doi.org/10.1590/0103-8478cr20180179.
Silva CHL (2020) Deriva simulada de dicamba na cultura do eucalipto. Dissertação de mestrado. Instituto Federal Goiano, Rio Verde. 59p.
Smith H, Ferrel JA, Webster T & Fernandez J (2017) Cotton Response to Simulated Auxin Herbicide Drift Using Standard and Ultra-low Carrier Volumes. Weed Technology, 03:01-09.
Souza TC, Magalhães PC, Mauro de Castro E, Pereira de Albuquerque PE & Marabesi MA (2013) The influence of ABA on water relation, photosynthesis parameters, and chlorophyll fluorescence under drought conditions in two maize hybrids with contrasting drought resistance. Acta Physiologiae Plantarum, 35:515-527.
Stirbet A & Govindjee (2011) On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104:236-257.
Taiz L, Zeiger E, Møller I & Murphy A (2017) Fisiologia e Desenvolvimento Vegetal. 6a ed. Artmed, Porto Alegre. 888p.
R development core team (2019) R: A Language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: <https://www.r-project.org/>. Accessed on: November 10th, 2019.
Tiecher TL, Tiecher T, Ceretta CA, Ferreira P, Nicolosso F, Soriani H, Tassinari A, Paranhos JT, De Conti L & Brunetto G (2016) Physiological and nutritional status of black oat (Avena strigosa Schreb.) grown in soil with interaction of high doses of copper and zinc. Plant Physiology and Biochemistry, 106:253-263.
Tiecher TL, Tiecher T, Ceretta CA, Ferreira P, Nicolosso F, Soriani H, Tassinari A, Paranhos JT, De Conti L, Kulmann M, Schneider R & Brunetto G (2017) Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Scientia Horticicultarea, 222:203-212.
USEPA - US Environmental Protection Agency (2013) Introduction to pesticide drift. Available at: < https://www.epa.gov/reducing-pesticide-drift/introduction-pesticide-drift>. Accessed on: December 12th, 2019.
Velini ED, Trindade ML, Barberis LRM & Duke SO (2010) Growth regulation and other secondary effects of herbicides. Weed Science, 58:351-354.
Wells ML, Prostko EP & Carter OW (2019) Simulated Single Drift Events of 2,4-D and Dicamba on Pecan Trees. HortTechnology, 01:01-07.
