Sulfonylurea resistance in Amaranthus hybridus from southern Brazil
Palabras clave:
chlorimuron-ethyl, metsulfuron-ethyl, acetolactate synthase, smooth pigweedResumen
Amaranthus hybridus is a C4 broadleaf species widely spread across Brazilian agricultural territory. Recently, several herbicide resistance reports have been documented in southern Brazil, including the reports for enolpyruvilshikymate-3-phosphate (EPSPS)- and acetolactate-synthase (ALS)- inhibitors. The objective of this study was to confirm the existence of an ALS resistant (R) A. hybridus population from Paraná state. Dose-response experiments were conducted with R and a known susceptible (S) population with herbicides from three different chemical groups of ALS inhibitors. Biomass relative to untreated control was quantified and GR50 (dose for 50% of biomass reduction), GR90 (dose for 90% of biomass reduction) and resistant index (RI) were calculated based on non-linear regression analysis. The R population was 6.9-fold resistant to chlorimuron-ethyl and 6.5-fold resistant to metsulfuron-ethyl (sulfonylureas - SUL). Additionally, the recommended rates from each herbicide was not sufficient to reach 90% control to R based on GR90 parameter estimation. There was no resistance to imazethapyr (imidazolinone - IMI) and cloransulan-methyl (triazolopyrimidine - TRI) due to the low doses of GR90 and non-significant RIs. The R A. hybridus population investigated was resistant to ALS inhibitors chlorimuron-ethyl and metsulfuron-ethyl (SUL), but susceptible to IMI and TRI herbicides.
Citas
Alcántara-de-la-Cruz R, Oliveira GM, Carvalho LB & Silva MFGF (2020) Herbicide resistance in Brazil: Status, impacts, and future challenges. IntechOpen, http://dx.doi.org/10.5772/intechopen.91236.
Beckie HJ & Harker KN (2017) Our top 10 herbicide-resistant weed management practices. Pest Management Science, 73:1045-1042.
Carvalho SJPD, López-Ovejero RF & Christoffoleti PJ (2008) Crescimento e desenvolvimento de cinco espécies de plantas daninhas do gênero Amaranthus. Bragantia, 67:317-326.
Cholette TB, Soltani N, Hooker DC, Robinson DE & Sikkema PH (2019) Suppression of annual ryegrass in corn with nicosulfuron. Weed Technology, 33:173-177.
Dellaferrera I, Cortés E, Panigo E, De Prado R, Christoffoleti P & Perreta, M (2018) First report of Amaranthus hybridus with multiple resistance to 2,4-D, dicamba, and glyphosate. Agronomy, 10.3390/agronomy8080140.
Francischini AC, Constantin J, Oliveira Jr RS, Santos G, Franchini LHM & Biffe DF (2014) Resistance of Amaranthus retroflexus to acetolactate synthase inhibitor herbicides in Brazil. Planta Daninha, 32:437-446.
Garcia MD, Nouwens A, Lonhienne TG & Guddat LW (2017) Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proceedings of the National Academy of Sciences, 114:1091-1100.
García MJ, Palma-Bautista C, Rojano-Delgado AM, Bracamonte E, Portugal J, Alcántara-de la Cruz R & De Prado R (2019) The triple amino acid substitution TAP-IVS in the EPSPS gene confers high glyphosate resistance to the superweed Amaranthus hybridus. International Journal of Molecular Sciences, 20:2396. Heap IM (2021) International herbicide-resistant weeds database. Available at: . Accessed on: April 6th, 2021.
Küpper A, Borgato EA, Patterson EL, Netto AG, Nicolai M, Carvalho SJ & Christoffoleti PJ (2017) Multiple resistance to glyphosate and acetolactate synthase inhibitors in Palmer amaranth (Amaranthus palmeri) identified in Brazil. Weed Science, 65:317-326.
Larran AS, Lorenzetti F, Tuesca D, Perotti VE & Permingeat HR (2018) Molecular mechanisms endowing cross-resistance to ALS-inhibiting herbicides in Amaranthus hybridus from Argentina. Plant Molecular Biology Reporter, 36:907-912.
Li J, Li M, Gao X & Fang F (2017) A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS inhibiting herbicides in crabgrass (Digitaria sanguinalis). Pest Management Science, 73:2538-2543.
Maertens KD, Sprague CL, Tranel PJ & Hines RA (2004) Amaranthus hybridus populations resistant to triazine and acetolactate synthase inhibiting herbicides. Weed Research, 44:21-26.
Milani A, Scarabel L & Sattin M (2020) A family affair: resistance mechanism and alternative control of three Amaranthus species resistant to acetolactate synthase inhibitors in Italy. Pest Management Science, 76:1205-1213.
Murphy BP & Tranel PJ (2019) Target-site mutations conferring herbicide resistance. Plants, 8:10.3390/plants8100382.
Oliveira Neto AM, Constantin J, Oliveira Júnior RS, Guerra N, Blainski E & Almeida Dan H (2019) Management of Sumatran fleabane after maize harvest in the fallow period shorter than 60 days. Communications in Plant Sciences, 9:53-58.
Penkcowski LH & Maschietto EHG (2019) Suspeita de Amaranthus hybridus resistente a glyphosate no Paraná. Available at: <https://maissoja.com.br/suspeita-de-amaranthus-hybridus-resistente-ao-herbicida-glyphosate-no-parana/>. Accessed on: October 2nd, 2020.
Perotti VE, Larran AS, Palmieri VE, Martinatto AK, Alvarez CE, Tuesca D & Permingeat HR (2019) A novel triple amino acid substitution in the EPSPS found in a high level glyphosate resistant Amaranthus hybridus population from Argentina. Pest management science, 75:1242-1251.
Powles SB & Yu Q (2010) Evolution in action: plants resistant to herbicides. Annual Review of Plant Biology, 61:317-347.
Preston C & Powles SB (2002) Evolution of herbicide resistance in weeds: initial frequency of target site-based resistance to acetolactate synthase-inhibiting herbicides in Lolium rigidum. Heredity, 88:08-13.
Rana N & Jhala AJ (2016) Confirmation of glyphosate-and acetolactate synthase (ALS)-inhibitor–resistant kochia (Kochia scoparia) in Nebraska. Journal of Agricultural Sciences, 8:54-62.
Ritz C, Baty F, Streibig JC & Gerhard D (2015) Dose-response analysis using R. PloS ONE, 10:e0146021.
Rodrigues BN & Almeida FS (2018) Guia de herbicidas. 7a ed. Londrina, Independent Production. 764p.
Romagnoli MV, Tuesca D & Permingeat HR (2013) Characterization of Amaranthus quitensis resistance to three families of herbicides. Ecología Austral, 23:119-125.
Santos TTM, Timossi PC, Lima SF, Gonçalves DC & Santana MV (2016) Associação dos herbicidas diclosulam e glyphosate na dessecação visando o controle residual de plantas daninhas na cultura da soja. Revista Brasileira de Herbicidas, 15:138-147.
Schwartz-Lazaro LM, Norsworthy JK, Scott RC & Barber LT (2017) Resistance of two Arkansas Palmer amaranth populations to multiple herbicide sites of action. Crop Protection, 96:158-163.
Sellers BA, Smeda RJ, Johnson WG, Kendig JA & Ellersieck MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Science, 51:329-333.
Senna LR (2015) Identificação de espécies de plantas daninhas do gênero Amaranthus L. (Amaranthaceae Juss.) no Brasil. In: Inoue MH, Oliveira Jr RS, Mendes KF & Constantin J (Eds.) Manejo de Amaranthus. São Carlos, RiMa Editora. p.01-20.
Soares MM, Freitas CDM, Oliveira FS, Mesquita HC, Silva TS & Silva DV (2019) Efeitos da competição e do déficit hídrico sobre o crescimento de girassol e plantas daninhas. Revista Caatinga, 32:318-328.
Tranel PJ & Wright TR (2002) Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Science, 50:700-712.
Tranel PJ, Wright TR & Heap IM (2020) Mutations in herbicide-resistant weeds to ALS inhibitors. Available at: <http://www.weedscience.com/>. Accessed on: October 5th, 2020.
Whaley CM, Wilson HP & Westwood JH (2006) ALS resistance in several smooth pigweed (Amaranthus hybridus) bioty-pes. Weed Science, 54:828-832.
Whaley CM, Wilson HP & Westwood JH (2007) A new mutation in plant Als confers resistance to five classes of Als-inhibiting herbicides. Weed Science, 55:83-90.
Zobiole LHS, Krenchinski FH, Pereira GR, Rampazzo PE, Rubin RS & Lucio FR (2018) Management programs to control Conyza spp. in pre-soybean sowing applications. Planta Daninha, 36:10.1590/s0100-83582018360100076.
