Chilling and forcing requirement of five international fig cultivars grown in Southeastern Brazil

Autores

  • Laís Naiara Honorato Monteiro Centro Universitário de Votuporanga
  • Sarita Leonel Unesp
  • Jackson Mirellys Azevedo Souza UFV
  • Rafael Bibiano Ferreira Unesp
  • Marcelo de Souza Silva Faculdade de Educação Superior e Ensino Integral
  • Emerson Loli Garcia Unesp

Palavras-chave:

Ficus carica L., antioxidant enzymes, biodiversity, carbohydrates, chilling requirements, gene pool

Resumo

Chill hours availability influence break dormancy, sprouting and production of temperate fruits trees in different regions. However, there are few reports on the subject for fig tree. This study aimed to evaluate the effects of the accumulated chilling hours on the physiology and dormancy release of fig cultivars. Stem cuttings of five fig cultivars were collected at the end of winter over two crop cycles and exposed to 0, 40, 80, 120 and 160 accumulated chilling hours (CH) in a cold chamber (8±0.5 oC). Physiology of fig buds was then evaluated with regards to antioxidant enzymes activity, carbohydrate and nitrogen contents. The exposure of fig stem cuttings with two buds to different accumulated CH presented physiological changes for antioxidant enzymes activity, carbohydrates and nitrogen contents and confirming that the cultivars responded differently to the climatic conditions of each crop cycle. Results detected that the lowest accumulated CH in field in 2018 (2.7 CH) enabled a greater effect of the artificial CH when compared to
2017 (19.5 CH). Each fig cultivar had a critical accumulation point. The cultivars Roxo de Valinhos and Pingo de Mel require less CH to break dormancy, while Troyano requires more CH to finish this vegetative rest period.

Referências

Alburquerque N, García-Montiel F, Carrillo A & Burgos L (2008) Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environmental and Experimental Botany, 64:162-170.

AOAC - Association of Official Analytical Chemists - (2019) Official methods of analysis. Method No. 967.21. Available at: https://www.aoac.org/official-methods-of-analysis-21st-edition-2019. Accessed on: January 9th, 2019.

Barbosa KBF, Costa NMB, Alfenas RCG, Paula SO, Minim VPR & Bressan J (2010) Oxidative stress: concept, implications and modulating factors. Revista de Nutrição, 23:629-643.

Beauvieux R, Wenden B & Dirlewanger E (2018) Bud dormancy in perennial fruit tree species: a pivotal role for oxidative cues. Frontiers in Plant Science, 9:657.

Bonhomme M, Peuch M, Ameglio T, Rageau R, Guilliot A, Decourteix M, Alves G, Sakr S & Lacointe A (2010) Carbohydrate uptake from xylem vessels and its distribution among stem tissues and buds in walnut (Juglans regia). Tree Physiology, 30:89-102.

Caverzan A, Casassola A & Brammer SP (2016) Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In: Shanker A & Shanker C (Eds.) Abiotic and biotic stress in plants - Recent advances and future perspectives. Croatia, InTech. p.463-480.

Chao W & Anderson JV (2010) Plant dormancy, a mechanism involving assorted molecular, physiological, and cellular processes. Plant Molecular Biology, 73:01-02.

Cunha A & Martins D (2009) Climatic classification for the districts of Botucatu and São Manuel, SP. Irriga, 14:01-11.

Faostat (2021) Food Agricultural Organization. Statistical–database. Available at: http://www.fao.org/faostat/es/#data/QC/visualize. Accessed on: June 17th, 2021.

Ferraz RA, Leonel S, Souza JMA, Ferreira RB, Modesto JH & Arruda LL (2020) Phenology, vegetative growth, and yield performance of fig in Southeastern Brazil. Pesquisa agropecuária brasileira, 55:01-10.

Ferreira DF (2019) Sisvar: a computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37:529-535.

Gariglio N, Rossia DEG, Mendowa M, Reig C & Agusti M (2006) Effect of artificial chilling on the depth of endodormancy and vegetative and flower budbreak of peach and nectarine cultivars using excised shoots. Scientia Horticulturae, 108:371-377.

Giannopolitis CN & Reis SK (1997) Superoxide dismutase: I. Occurrence in higherplants. Plant Physiology, 59:09-314.

Gholizadeh J, Sadeghipour H, Abdolzadeh A, Hemmati K, Hassani D & Vahdati K (2017) Redox rather than carbohydrate metabolism differentiates endodormant lateral buds in walnut cultivars with contrasting chilling requirements. Scientia Horticulturae, 225:29-37.

Gonçalves BHL, Leonel S, Tecchio MA, Ferraz RA, Souza JMA & Arruda LL (2015) Carbohydrate concentration in ‘BRS Rubimel’ peach trees during the annual cycle. Journal of Applied Science & Technology, 9:419-426.

Gupta AK & Kaur N (2005) Sugar signaling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. Journal of Biosciences, 30:761-776.

Hernandez JA, Díaz-Vivancos P, Martínez-Sánchez G, Alburquerque N, Martínez D, Barba-Espín G, Acosta-Motos JR, Carrera E & García-Bruntón J (2021) Physiological and biochemical characterization of bud dormancy: Evolution of carbohydrate and antioxidant metabolisms and hormonal profile in a low chill peach variety. Scientia Horticulturae, 281:01-13.

Ikegami H, Nogata H, Inoue Y, Himero S, Yakusshiji H, Hirata C, Hirashima K, Mori M, Awamura M & Nakahara T (2013) Expression of FcFT1, a FLOWERING LOCUS T-like gene, is regulated by light and associated with inflorescence differentiation in fig (Ficus carica L.). BMC Plant Biology, 13:01-11.

Ito A, Sakamoto D & Moriguchi T (2012) Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Scientia Horticulturae, 144:187-194.

Kaufmann H & Blanke M (2017) Changes in carbohydrate levels and relative water content (RWC) to distinguish dormancy phases in sweet cherry. Journal of Plant Physiology, 218:01-05.

Leonel S & Sampaio AC (2011) A figueira. São Paulo, Editora Unesp. 398p.

Marafon AC, Citadin I, Amarante L, Herter FG & Hawerroth FJ (2011) Chilling privation during endodormancy period disturbs carbohydrate mobilization in Japanese pear. Scientia Agricola, 68:462-468.

Marafon AC, Herter FG, Bacarin MA & Hawerroth FJ (2009) Atividade da peroxidase durante o período hibernal de plantas de pessegueiro (Prunus persica (L.) Batsch.) cv. Jubileu com e sem sintomas da morte precoce. Revista Brasileira de Fruticultura, 31:938-942.

Martinazzo EG, Perboni AT, Oliveira PV, Bianchi VJ & Bacarin MA (2013) Atividade fotossintética em plantas de ameixeira submetidas ao déficit hídrico e ao alagamento. Ciência Rural, 43:35-41.

Meitha K, Konnerup D, Colmer TD, Considine JA, Foyer CH & Considine MJ (2015) Spatio-temporal relief from hypoxia and production of reactive oxygen species during bud burst in grape-vine (Vitis vinifera L.). Annals of Botany, 116:703-711.

Muñoz-Fambuena N, Mesejo C, Gozález-Mas MC, Primo-Millo E, Agustí M & Iglesias DJ (2011) Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Annals of Botany, 108:511-519.

Nelson N (1944) A photometric adaptation of Somogi method for determination of glicose. Journal Biological Chemistry, 153:375-380.

Oliveira Junior MA, Souza JMA, Silva MS, Ferreira RB, Leonel M & Leonel S (2018) Aplicação de cloreto de cálcio em pós-colheita, nos frutos de figueira ‘Roxo de Valinhos’. Revista de Ciências Agrárias, 41:241-250.

Oliveira RJP, Bianchi VJ, Aires RF & Campos ÂD (2012) Carbohidrates content in hardwood cuttings of blueberry. Revista Brasileira de Fruticultura, 34:1199-1207.

Oukabli A & Mekaoui A (2012) Dormancy of fig cultivated under Moroccan conditions. American Journal of Plant Sciences, 3:473-479.

Pio R & Chagas EA (2011) Variedades de figueira. In: Leonel S & Sampaio AC (Eds.) A figueira. São Paulo, Editora Unesp. p.93-110.

Prassinos C, Rigas S, Kizis D, Vlahou A & Hatzopoulos P (2011) Subtle proteome differences identified between post-dormant vegetative and flower peach buds. Journal of Proteomics, 74:607-619.

Rodrigues MGF, Monteiro LNH, Ferreira AFA, Santos TP, Pavan BE, Neves VAB & Boliani AC (2019) Biometric characteristics among fig tree genotypes in Brazil. Genetics and Molecular Research, 18:01-10.

Rosa AM, Pescador R, Silva AL, Brighenti AF & Brunetto G (2014) Fertilidade e reservas de carbono e nitrogênio em gemas de ramos das viníferas ‘Carbernet Sauvignon’ e ‘Nebbiolo’. Revista Brasileira de Fruticultura, 36:576-585.

Seif El-Yazal MA & Rady MM (2012) Changes in nitrogen and polyamines during breaking bud dormancy in “Anna” apple trees with foliar application of some compounds. Scientia Horticulturae, 136:75-80.

Shao H & Ma FW (2004) Relationship between breaking of dormancy and reactive oxygen species metabolism in flower buds of pear. Journal of plant physiology and molecular biology, 30:660-664.

Souza AP, Silva AC, Leonel S & Escobedo JF (2009) Basic temperatures and thermal sum for the fig trees pruned in different months. Revista Brasileira de Fruticultura, 31:314-322.

Souza JMA, Silva MS, Ferraz RA, Modesto JH, Ferreira RB, Bolfarini ACB, Tecchio MA & Leonel S (2021) The use of hydrogen cyanamide or nitrogen fertilizer increases vegetative and productive performance of fig cv. Roxo de Valinhos. Acta Scientiarum Agronomy, 43:e50519.

Sudawan B, Chang CS, Chao HF, Ku MSB & Yen YF (2016) Hydrogen cyanamide breaks grapevine bud dormancy in the summer through transient activation of gene expression and accumulation of reactive oxygen and nitrogen species. BMC Plant Biology, 16:202.

Takemura Y, Kuroki K, Jiang M, Matsumoto K & Tamura F (2015) Identification of the expressed protein and the impact of change in ascorbate peroxidase activity related to endodormancy breaking in Pyrus pyrifolia. Plant Physiology and Biochemistry, 86:121-129.

Teisseire H & Guy V (2000) Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Science, 153:65-72.

Tixier A, Gambetta GA, Godfrey J, Orozco J & Zwieniecki MA (2019) Non-structural Carbohydrates in Dormant Woody Perennials; The Tale of Winter Survival and Spring Arrival. Frontiers in Forests and Global Change, 2:01-08.

Vossen PM & Silver D (2000) Growing temperate tree fruit and nut crops in the home garden. California, University of California Cooperative Extension. 37p.

Waldie T, Hayward A & Beveidge CA (2010) Axillary bud outgrowth in herbaceous shoots: how do strigolactones fit into the picture? Plant Molecular Biology, 73:27-36.

Downloads

Publicado

2025-06-03

Como Citar

Honorato Monteiro, L. N., Leonel, S., Mirellys Azevedo Souza, J., Bibiano Ferreira, R., de Souza Silva, M., & Loli Garcia, E. (2025). Chilling and forcing requirement of five international fig cultivars grown in Southeastern Brazil. Revista Ceres, 69(4), 379–389. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/8026

Edição

Seção

CROP PRODUCTION

Artigos mais lidos pelo mesmo(s) autor(es)