Water footprint of Arabica coffee from “Matas de Minas” under shade management
Palavras-chave:
shading, climate changes, water resources, coffee cropResumo
Studies related to climate change and agricultural value chains have in common the growing concern on conserving water resources. Thus, the concept of the water footprint stands out, which measures the amount of water (in volume) necessary to produce a unit (in mass) of a given product. Among Brazilian agricultural activities, coffee farming emerges as one of the most important, even though the crop is sensitive to potential climatic changes, especially to the increase in temperature and periods of drought. An alternative to mitigate the effects of climate change is shade management, which is common in agroforestry systems. Therefore, the objective of this study was to evaluate the influence of shade management on the water footprint of coffee activity in the region of “Matas de Minas”. The water footprint was calculated for the field and product processing phase. Despite reducing the evapotranspiration of the coffee plant, shade management provided an increase in the water footprint, since it decreased the crop yield. The water footprint data obtained are expressive, with a calculated value of 13,862 m3 t-1 for full sun management and 16,895 m3 t-1 for shade management, in which both are the most recommended for the agricultural sector.
Referências
Alvares CA, Stape JL, Sentelhas PC, Moraes JLG & Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22:711-728.
Araújo SAC & Deminicis BB (2009) Fotoinibição da fotossíntese. Revista Brasileira de Biociências, 7:463-472.
Camargo MBP (2010) The impact of climatic variability and climate change on arabic coffee crop in Brazil. Bragantia, 69:239-247.
Campanha MM, Santos RHS, Freitas GB, Martinez HEP, Garcia SLR & Finger FL (2005) Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil. Agroforestry Systems, 63:75-82.
Chapagain AK & Hoekstra AY (2007) The water footprint of coffee and tea consumption in the Netherlands. Ecological Economics, 64:109-118.
CNNPA-MS (1978) Ministério da Saúde. Comissão Nacional de Normas e Padrões para Alimentos. Resolução no 12, de 1978. Available at: <https://bvsms.saude.gov.br/bvs/saudelegis/cnnpa/1978/res0012_30_03_1978.html>. Accessed on: July 25th, 2018.
Damatta FM & Ramalho JDC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian Journal of Plant Physiology, 18:55-81.
EMBRAPA – Empresa brasileira de pesquisa Agropecuária (2018) Sistema Brasileiro de Classificação de Solos. 5a ed. Rio de Janeiro, Embrapa Solos. 590p.
França Neto AC, Mantovani EC, Vicente MR, Vieira GHS, Sediyama GC & Leal BG (2011) Comparação entre métodos simplificados de estimativa da evapotranspiração de referência (ETo) para regiões produtoras de café brasileiras. Coffee Science, 06:159-171.
Guimarães DP, Reis RL & Landau EC (2010) Índices pluviométricos em Minas Gerais. Sete Lagoas, Embrapa Milho e Sorgo. 90p. (Boletim de Pesquisa e Desenvolvimento, 30).
Hargreaves GH & Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. Journal of Irrigation and Drainage Engineering, 129:53-63.
Hoekstra AY & Hung PQ (2002) A quantification of virtual water flows in relation to crop trade. Delft, Institute for Water Education. 66p. (Value of Water Research Report Series, 11).
Jaramillo-Botero C, Santos RHS, Martinez HEP, Cecon PR & Fardin MP (2010) Production and vegetative growth of coffee trees under fertilization and shade levels. Scientia Agricola, 67:639-645.
Mancuso MAC, Perdoná MJ & Soratto RP (2013) Produção de café sombreado. Colloquium Agrariae, 09:31-44.
Matos AT (2008) Tratamento de resíduos na pós-colheita do café. In: Borem FM (Ed.) Pós-colheita do Café. Lavras, UFLA. p.159-201.
Mekonnen MM & Hoekstra AY (2010) The green, blue and grey water footprint of farm animals and animal products. Netherland, UNESCO-IHE Institute for Water Education. 50p. (Report Series, 48).
Morais H, Caramori PH, Koguishi MS, Gomes BM & Ribeiro AMA (2009) Sombreamento de cafeeiros durante o desenvolvimento das gemas florais e seus efeitos sobre a frutificação e produção. Ciência Rural, 39:400-406.
Pereira AR, Angelocci LR & Sentelhas PC (2007) Meteorologia Agrícola. Edição Revista e Ampliada. Piracicaba, Esalq/USP. 192p.
Perfecto I, Vanderneer PH, Koguish MS, Gomes BM & Ribeiro AMA (2005) Biodiversity, yield, and shade coffee certification. Ecological Economics, 54:435-446.
Ronchi CP, Souza Júnior LM, Almeida WL & Souza DS (2015) Respostas ecofisiológicas de cafeeiros submetidos ao déficit hídrico para concentração da florada no Cerrado de Minas Gerais. Pesquisa Agropecuária Brasileira, 50:24-32.
Silva JS, Donzeles SML, Soares SF, Moreli AP & Vitor DG (2014) Lavadores e Sistema de Reúso da Água no Preparo do Café. Brasília, Embrapa. 12p. (Circular Técnica, 4).
Soares SF, Moreli AO, Donzeles SML & Prezotti LC (2013) Reúso da Água na Produção de Café Cereja Descascado. Embrapa Café, 01:01-08.
Soto-Pinto L, Perfecto I, Castillo-Hernandez J & Cabalerro-Neto J (2000) Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. Agriculture, Ecosystems and Environment, 80:61-69.
Souza HN, Goede RGM, Brussarard L, Cardoso IM, Duarte EMG, Fernandes RBA, Gomes LC & Pulleman MM (2012) Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems and Environment, 146:179-196.
Vaast P, Bertrand B, Perriot JJ, Guyot B & Guinard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. Journal of the Science of Food and Agriculture, 86:197-204.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.