Sensitivity analysis of the AquaCrop model for wheat crop in Campos Gerais region, Paraná

Autores

  • Stefanie Lais Kreutz Rosa UFPR
  • Jorge Luiz Moretti de Souza UFPR
  • Rodrigo Yoiti Tsukahara Fundação ABC
  • Edson Giovanni Kochinski Fundação ABC

Palavras-chave:

mathematical modeling, parameters, Triticum aestivum

Resumo

The use of crop modeling can be useful to understand the interactions between the soil-plant-atmosphere system. The objective of this study was to evaluate sensitivity analysis of the AquaCrop model parameters for wheat crop in the Campos Gerais Region. The varietie tested was TBIO Sinuelo in Castro, Ponta Grossa and Itaberá cities. The analyzed parameters refer to crop phenology, transpiration, biomass production, yield formation, stresses and soil management. The sensitivity analysis was realized varying individually each input parameter in the AquaCrop for the calculation of the Relative Sensitivity Index (SI). The most sensitive parameters of the AquaCrop were: reference harvest index (HIo); water productivity normalized for evapotranspiration and CO2 concentration (WP*); crop coefficient when canopy expansion is complete (KcTR,x); fertility levels; and maximum canopy cover (CCx). The higher sensitivity of HIo and WP* is because they are directly related to two main equations of AquaCrop, linked to the estimates of dry above-ground biomass and yield formation, respectively. The AquaCrop counts WP* reflecting directly on dry above-ground biomass production and on final grain yield. The canopy decline coefficient (CDC) presented considerable sensitivity only in Castro due to the longer duration of the phenological cycle. Fertility levels and saturated hydraulic conductivity (Ksat) in Castro was the least sensitive parameters in the analysis.

Referências

Allen RG, Pereira LS, Raes D & Smith M (1998) Crop evapotranspiration: Guidelines for computing crop water requirements - FAO Irrigation and Drainage Paper 56. Rome, FAO. 300p.

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM & Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22:711-728.

Basso B, Cammarano D & Carfagna E (2013) Review of crop yield forecasting methods and early warning systems. In: Proceedings of the First Meeting of the Scientific Advisory Committee of the Global Strategy to Improve Agricultural and Rural Statistics, Rome. Proceedings, FAO. p.18-19.

Bouazzama B, Karrou, M, Boutfirass M & Bahri A (2017) Assessment of AquaCrop model in the simulation of durum wheat (Triticum aestivum L.) growth and yield under different water regimes. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 5:222-230.

Bitri M & Grazhdani S (2015) Validation of AquaCrop model in the simulation of sugar beet production under different water regimes in southeastern Albania. International Journal of Engineering Science and Innovative Technology, 4:171-181.

Cibin R, Sudheer KP & Chaubey I (2010) Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes, 24:1133-1148.

Conab - Companhia Nacional de Abastecimento (2017) A cultura do trigo. Brasília, Conab. 218p.

Dalla Marta A, Natali F & Orlandini S (2016) Serbia for excel: AquaCrop the FAO crop-model to simulate yield response to water. Novi Sad, Department of Agrifood Production and Environmental Sciences. 90p.

Farahani HJ, Izzi G & Oweis TY (2009) Parameterization and Evaluation of the Aquacrop Model for Full and Defi cit Irrigated Cotton. Agronomy Journal, 101:469-476.

FAO - Food and Agriculture Organization of the United Nations (2018) Land & Water. AquaCrop. Available at: <http://www.fao.org/land-water/databases-and-software/Aquacrop/en/>. Accessed on: March, 03rd, 2018.

Gomes ACS, Robaina AD, Peiter MX, Soares FC & Parizi A (2014) Modelo para estimativa da produtividade para a cultura da soja. Ciência Rural, 44:43-49.

Heng LK, Hsiao T, Evett S, Howell T & Steduto P (2009) Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agronomy Journal, 101:487-498.

IBGE - Instituto Brasileiro de Geografia e Estatística (2017) Produção Agrícola: Lavoura Temporária. Available at: <http://cidades.ibge.gov.br/>. Accessed on: November 13th, 2018.

Mirsafi ZS, Sepaskhah AR, Ahmadi SH & Kamgar-Haghighi AA (2016) Assessment of AquaCrop model for simulating growth and yield of saffron (Crocus sativus L.). Scientia Horticulturae, 211:343-351.

Morell FJ, Yang HS, Cassman KG, Wart JV, Elmore RW, Licht M, Coulter JA, Ciampitti IA, Pittelkow CM, Brouder SM, Thomison P, Lauer J, Graham C, Massey R & Grassini P (2016) Can crop simulation models be used to predict local to regional maize yields and total production in the U.S. Corn Belt?. Field Crops Research, 192:01-12.

Pareek N, Roy S, Saha S & Nain A (2017) Calibration & validation of AquaCrop model for wheat crop in Tarai region of Uttarakhand. Journal of Pharmacognosy and Phytochemistry, 6:1442-1445.

Piekarski KR, Souza JLM, Tsukahara RY, Rosa SLK & Oliveira CT (2017) Estimativa da produtividade da cultura da soja considerando a influência dos atributos físico-hídricos do solo na Região dos Campos Gerais. In: 5th Congresso Virtual de Agronomia. Proceedings, Convibra. s/p.

Raes D, Steduto P, Hsiao TC & Fereres E (2009) AquaCrop – The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101:438-447.

Raes D, Steduto P, Hsiao TC & Fereres E (2011) Reference Manual: Chapter 1: FAO cropwater productivity model to simulate yield response to water. Rome, FAO. 19p.

Raes D, Steduto P, Hsiao TC & Fereres E (2012) Reference Manual: Chapter 2: Users guide. Rome, FAO. 164p.

Raes D, Steduto P, Hsiao TC & Fereres E (2017) Reference Manual of AquaCrop: Annexes. Rome, FAO. 81p.

Raes D, Steduto P, Hsiao TC & Fereres E (2018a) Reference Manual: Chapter 1: FAO crop-water productivity model to simulate yield response to water. Rome, FAO. 19p.

Raes D, Steduto P, Hsiao TC & Fereres E (2018b) Reference Manual: Chapter 2: Users guide. Rome, FAO. 302p.

Raes D, Steduto P, Hsiao TC & Fereres E (2018c) Reference Manual: Chapter 3: Calculation procedures. Rome, FAO. 141p.

Razzaghi F, Zhou Z, Andersen MN & Plauborg F (2017) Simulation of potato yield in temperate condition by the AquaCrop model. Agricultural Water Management, 191:113-123.

Salemi H, Soom MAM, Lee TS, Mousavi SF, Ganji A & Yusoff MK (2011) Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. African Journal of Agricultural Research, 610:2204-2215.

Shimandeiro A, Kantelhardt J & Weirich Neto PH (2008) Characterization of major crop management in the buffer zone of Vila Velha State Park, state of Paraná, Brazil. Acta Scientiarum Agronomy, 30:225-230.

Silva JMA, Pruski FF, Rodrigues LN & Cecilio RA (2009) Modelo para obtenção do hidrograma de escoamento superficial em bacias hidrográficas. Revista Brasileira de Ciências Agrárias, 4:78-84.

Silvestro PC, Pignatti S, Yang H, Yang G, Pascucci S, Castaldi F & Casa R (2017) Sensitivity analysis of the AquaCrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale applications. PLoS One, 12:01-30.

Steduto P, Hsiao TC, Raes D & Fereres E (2009) AquaCrop – The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101:426-437.

Steduto P, Hsiao TC, Fereres E & Raes D (2012) Crop yield response to water. Roma, FAO. 500p. (FAO Irrigation and Drainage Paper, n° 66.)

Taconeli CA & Barreto MCM (2003) Intervalos de confiança para a média populacional usando amostragem em conjuntos ordenados. Revista de Matemática e Estatística, 21:41-66.

Todorovic M, Albrizio R, Zivotic L, Abi Saab MT, Stöckle C & Steduto P (2009) Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Jounal, 101:508-521.

Vanuytrecht E, Raes D & Willems P (2014) Global sensitivity analysis of yield output from the water productivity model. Environmental Modelling and Software, 51:323-332.

Xing H, Xu X, Li Z, Chen Y, Feng H, Yang G & Chen Z (2017) Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test. Journal of Integrative Agriculture, 16:2444-2458.

Downloads

Publicado

2025-06-03

Como Citar

Kreutz Rosa, S. L., Moretti de Souza, J. L., Yoiti Tsukahara, R., & Kochinski, E. G. (2025). Sensitivity analysis of the AquaCrop model for wheat crop in Campos Gerais region, Paraná. Revista Ceres, 70(1), 32–41. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/8077

Edição

Seção

AGRICULTURAL ENGINEERING