Characterization by near infrared spectroscopy of seeds and oils of Amaranthus spp. as a function of cropping systems

Autores

  • Denilson Paulo da Rosa Mavaieie UFLA
  • Douglas Correa de Souza UFLA
  • Fernanda Maria Guedes Ramalho UFLA
  • Valquíria de Fatima Ferreira Mavaieie UFLA
  • Luciane Vilela Resende UFLA
  • Renato Mendes Guimarães UFLA

Palavras-chave:

non-conventional vegetable, partial least squares discriminant analysis, principal component analysis

Resumo

Species of the Amaranthus genus are very versatile and have potential for the application in the development of commercial products. The near infrared spectroscopy (NIR) is an efficient tool that can help in the quality control of products, quickly and non-destructive to the sample. The goal of this study was to carry out the distinction of seed and oils of different Amaranthus species using the near infrared spectroscopy. Three species were used: A. viridis L., A. hybridus L. e Amaranthus sp. (commercial). The spectra acquired from the sample using the near infrared spectroscopy were submitted to the partial least squares discriminant analysis (PLS-DA) and to the principal component analysis (PCA). Through PCA, it was possible to differentiate the Amaranthus species both for seeds and oils. Through PLS-DA, it was possible to predict the classes of the species with high degree of correct classification, with 96.67% of correct classifications for seeds and 98.89% for oil. Thus, with the use of the near infrared spectroscopy associated with the multivariate statistical analysis, it is possible to classify the different Amaranthus species, especially when using the oil.

Referências

Álvares CA, Stape JL, Sentelhas PC, Gonçalves JLM & Sparovek G (2013) Koppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22:711-728.

Agelet LE, Armstrong PR, Clariana IR & Hurburgh CR (2012) Measurement of single soybean seed attributes by near infrared technologies. A comparative study. Journal of Agricultural and Food Chemistry, 60:8314-8322.

Bayón ND (2022) Identifying the weedy amaranths (Amaranthus, Amaranthaceae) of South America. Advances in Weed Science, 40:e0202200013.

Bazoni CHV, Ida EI, Barbini DF & Kurozawa LE (2017) Near-infrared spectroscopy as a rapid method for evaluation physicochemical changes of stored soybeans. Journal of Stored Products Research, 73:01-06.

Brasil - Ministério da Agricultura, Pecuária e Abastecimento (2013) Manual de Hortaliças Não Convencionais. Brasília, MAPA/ACS. 99p.

Carvalho NM & Nakagawa J (2012) Sementes: Ciência, tecnologia e produção. 5ª ed. Jaboticabal, FUNEP. 588p.

Curran PJ, Dungan JL, Macler BA, Plummer SE & Peterson DL (1992) Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sensing of Environment, 39:153-166.

Ejaz I, He S, Li W, Hu N, Tang C, Li S, Li M, Diallo B, Xie G & Yu K (2021) Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy. Frontiers in Plant Science, 12:720022.

Gobbo-Neto L & Lopes NP (2007) Plantas medicinais: fatores de influência no conteúdo de metabólitos secundários. Química Nova, 30:374-381.

Jimoh MO, Okaiyeto K, Oguntibeju OO & Laubscher CP (2022) A Systematic Review on Amaranthus - Related Research. Horticulturae, 8:239-256.

Kusumaningrum D, Lee H, Lohumi S, Mo C, Kim MS & Cho BK (2017) Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy. Science of food and Agriculture, 98:1734-1742.

Li R, Kawamura S, Fujita H & Fujikawa S (2013) Near-infrared Spectroscopy for Determining Grain Constituent Contents at Grain Elevators. Engineering in Agriculture, Environment and Food, 6:20-26.

Lima A & Bakker J (2011) Near-infrared spectroscopy for monitoring peripheral tissue perfusion in critically ill patients. Revista Brasileira de Terapia Intensiva, 23:341-351.

Lozano-Grande MA, Gorinstein S, Espitia-Rangel E, Dávila-Ortiz G & Martínez-Ayala AL (2018) Plant sources, extraction methods, and uses of squalene. International Journal of Agronomy, 2018:1829160.

Matzrafi M, Herrmann I, Nansen C, Kliper T, Zait Y, Ignat T, Siso D, Rubin B, Karnieli A & Eizenberg H (2017) Hyperspectral Technologies for Assessing Seed Germination and Trifloxysulfuron-methyl Response in Amaranthus palmeri (Palmer Amaranth). Frontiers in Plant Science, 8:474-787.

Marcos Filho J (2015) Fisiologia de sementes de plantas cultivadas. 2ª ed. Londrina, Abrates. 660p.

Marzzoco A & Torres BB (2017) Bioquímica básica. 4ª ed. Rio de Janeiro, Guanabara Koogan. 335p.

Mir NA, Riar CS & Singh S (2018) Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends in Food Science & Technology, 75:170-180.

Monferrere GL, Azcarate SM, Cantarelli MÁ, Funes IG & Camiña JM (2012) Chemometric characterization of sunflower seeds. Journal of Food Science, 77:1018-1022.

Nunes CA, Freitas MP, Pinheiro ACM & Bastos SC (2012) Chemoface: a novel free user-friendly interface for chemometrics. Journal of the Brazilian Chemical Society, 23:2003-2010.

Olusanya AC (2017) A multi-species assessment of genetic variability in Nigerian Amaranthus accessions: potential for improving intra-and interspecies hybridization breeding. Archives of Agronomy and Soil Science, 64:621-625.

Parys W, Pyka-Pajak A & Dołowy M (2019) Application of Thin-Layer Chromatography in Combination with Densitometry for the Determination of Diclofenac in Enteric Coated Tablets. Pharmaceuticals, 12:183.

Parveen M, Chattopadhyay NC & Tah J (2014) Strategy of biometric evaluation of vegetative yield attributes of amaranth cultivars. Bioscience Discovery, 5:70-73.

Ramaiya SD, Lee HH, Xiao YJ, Shahbani NS, Zakaria MH & Bujang JS (2021) Organic cultivation practices enhanced antioxidant activities and secondary metabolites in giant granadilla (Passiflora quadrangularis L.). PLoS ONE, 16:e0255059.

Sá AGA, Moreno YMF & Carciofi BAM (2020) Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology, 97:170-184.

Siavoshi M & Laware SL (2013) Organic Fertilizers Role on Antioxidant Enzymes in Rice (Oryza sativa L.). International Journal of Farming and Allied Sciences, 2:1337-1342.

Silva LF, Souza DC, Resende LV, Nassur RCMR, Samartini CQ & Gonçalves WM (2018) Nutritional Evaluation of Non-Conventional Vegetables in Brazil. Anais da Academia Brasileira de Ciências, 90:1775-1787.

Silva LF, Souza, DC, Nassur RCMR, Bittencourt WJM, Resende LV & Gonçalves WM (2021) Nutritional characterisation and grouping of unconventional vegetables in Brazil. The Journal of Horticultural Science & Biotechnology, 96:508-513.

Silva LF, Souza DC, Xavier JB, Samartini CQ & Resende LV (2019) Avaliação nutricional de caruru (Amaranthus spp.). Agrarian, 12:411-417.

Singh AK (2017) Early History of Crop Introductions into India: II. Amaranthus (L.) spp. Asian Agri-History, 21:319-324.

Sohn SI, Oh YJ, Pandian S, Lee YH, Zaukuu JLZ, Kang HJ, Ryu TH, Cho WS, Cho YS & Shin EK (2021) Identification of Amaranthus Species Using Visible-Near-Infrared (Vis-NIR) Spectroscopy and Machine Learning Methods. Remote Sens, 13:4149-4162.

Srivastava R (2017) An updated review on phyto-pharmacological and pharmacognostical profile of Amaranthus tricolor: A herb of nutraceutical potentials. The Pharma Innovation Journal, 6:124-129.

Souza M, Kuhnen S, Kazama DCS, Kurtz C, Trapp T, Júnior VM & Comin JJ (2017) Predição dos teores de compostos fenólicos e flavonoides na parte aérea das espécies Secale cereale L., Avena strigosa L. e Raphanus sativus L. por meio de espectroscopia no infravermelho próximo (NIR). Química Nova, 40:1074-1081.

Shin DH, Heo HJ, Lee YJ & Kim HK (2004) Amaranth squalene reduces serum and liver lipid levels in rats fed a cholesterol diet. British Journal of Biomedical Science, 61:11-04.

Vasconcelos MC, Oliveira AS, Granja JAA, Costa JC & Guimarães RM (2018) Diferenciação de cultivares de girassol por espectroscopia no infravermelho próximo e análise multivariada, utilizando sementes e óleo. Revista Brasileira de Ciências Agrarias, 13:e5582.

Workman J & Weyer L (2012) Practical Guide and Spectral Atlas for Interpretive Near Infrared Spectroscopy. 2º ed. Boca Raton, CRC Press. 326p.

Xavier JB, De Souza DC, De Souza LC, Guerra TS, Resende LV & Pereira J (2018) Nutritive potential of amaranth weed grains. African Journal of Agricultural Research, 13:1140-1147.

Xavier JB, Castro DG, Silva DM, Abreu RAA, Souza DC & Silva MLS (2019a) Eficiência de absorção de nutrientes em Amaranthus spp. Magistra, 30:199-210.

Xavier JB, Andrade DB, Castro DG, Guimarães GC, Resende LV & Guimarães RM (2019b) Morphological, chemical and physiological characterization of Amaranthus spp. Seeds. Journal of Seed Science, 41:478-487.

Xiaobo Z, Jiewen Z, Povey MJW, Holmes M & Hanpin M (2010) Variables selection methods in near-infrared spectroscopy. Acta Analytica Chimica, 667:14-32.

Downloads

Publicado

2025-06-03

Como Citar

da Rosa Mavaieie, D. P., Correa de Souza, D., Guedes Ramalho, F. M., Ferreira Mavaieie, V. de F., Vilela Resende, L., & Mendes Guimarães, R. (2025). Characterization by near infrared spectroscopy of seeds and oils of Amaranthus spp. as a function of cropping systems. Revista Ceres, 70(3), 30–39. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/8111

Edição

Seção

CROP PRODUCTION

Artigos mais lidos pelo mesmo(s) autor(es)