Interception of photosynthetically active radiation, growth and yield of grains in sunflower under doses of nitrogen

Autores

  • Liliani Elisa Lemainski UFSM
  • Diego Nicolau Follmann UFSM
  • Astor Henrique Nied UFSM
  • Rovani Marcos Rossato UFSM
  • Cristian Mateus Freiberg UFSM
  • Eduardo Brezolim UFSM

Palavras-chave:

Heliantus annus L.;, nutritional management;, grain productivity;, leaf area index;, extinction coefficient.

Resumo

The objective of the work was to evaluate the response of growth and production, the interception efficiency of photo-synthetically active radiation, the extinction coefficient, and the productivity components of sunflower in with the use of cover nitrogen doses in subtropical environments. The experiment was conducted at Santa Maria-RS, Brazil, where they were evaluated the leaf area index (LAI), interception efficiency (εi), and extinction coefficient (k) of photosynthetically active radiation (PAR), plant height (PH), chapter diameter (CPD), stem diameter (SD), the mass of one thousand achenes (MTA), and grain productivity (PROD) were evaluated. Nitrogen doses influenced the LAI only at 52 and 65 DAE, while the canopy interception efficiency (CIE) was influenced at 36, 42, 52, and 86 DAE. Therefore , for growth and production doses of cover N positively influence stem diameter and grain productivity. The application of cover nitrogen fertilizer linearly and positively affects the sunflower crop, and 160 kg ha-1 N. Interception efficiency of photosynthetically active radiation by the canopy and the leaf area index are positively influenced by the doses of nitrogen in the canopy. The extinction coefficient of the photosynthetically active radiation in sunflower decreases with the increasing dose of cover N.

Referências

Allen RG, Pereira LS, Raes D & Smith M (1998) Crop evapotranspiration - Guidelines for computing crop water requirements. Available at: <http://www.fao.org/tempref/SD/Reserved/Agromet/PET/FAO_Irrigation_Drainage_Paper_56.pdf>. Accessed on: August 18th, 2020.

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JL de M & Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorolo-gische Zeitschrift, 22:711-728.

Aquino LA, dos Santos Júnior V, Guerra JVS & Costa MM (2011) Estimativa da área foliar do girassol por método não destrutivo. Bragantia, 70:832-836.

Barni NA, Berlato MA, Bergamaschi H & Riboldi J (1995) Rendimento máximo do girassol com base na radiação solar e temperatura: ii. Produção de fitomassa e rendimento de grãos. Pesquisa Agropecuária Gaúcha, 1:201-216.

Casaroli D, Fagan EB, Simon J, Medeiros SP, Manfron PA, Neto DD, van Lier Q de J, Müller L & Martin TN (2007) Radiação solar e aspectos fisiológicos na cultura de soja. Revista da Faculdade de Zootecnia, Veterinária e Agronomia, 14:102-120.

Castilioni VBR, Balla A, de Castro C & Silveira JM (1997) Fases de Desenvolvimento da Planta de Girassol. Londrina, Embrapa. 26p.

Castro CD, Balla A, Castiglioni VBR & Sfredo GJ (1999) Doses e métodos de aplicação de nitrogênio em girassol. Scientia Agricola, 56:827-833.

Conab - Compania Nacional de Abastecimento (2021) Acompanhamento da safra brasileira de grãos. Available at: <https://www.conab.gov.br/component/k2/item/download/39391_157eb9a1b890a11918593c8f-c32ac419>. Accessed on: December 18th, 2021.

Dalmago GA, Pinto DG, Fontana DC, de Gouvea JA, Bergamaschi H, Fochesatto E & Santi A (2018) Use of solar radiation in the improvement of spring canola (Brassica napus L., Brassicaceae) yield influenced by nitrogen topdressing fertilization. Agrometeoros, 26:223-237.

De Castro JR, Cuadra SV, Pinto LB, de Souza JMH, dos Santos MP & Heinemann AB (2018) Parametrization of models and use of estimated global solar radiation data in the irrigated rice yield simulation. Revista Brasileira de Meteorologia, 33:238-246.

Elli EF, Caron BO, Medeiros SLP, Eloy E, Monteiro GC & Schmidt D (2015) Effects of growth reducer and nitrogen fertilization on morphological variables, SPAD index, interception of radiation and productivity of wheat. Revista Ceres, 62:577-582.

Embrapa – Empresa Brasileira de Pesquisa Agropecuária (1997) A Cultura do Girassol. Londrina, Centro Nacional de Pesquisa de Soja. 35p. (Circular, 13).

Fagundes JD, Santiago G, de Mello AM, Bellé RA & Streck NA (2007) Crescimento, desenvolvimento e retardamento da senescência foliar em girassol de vaso. Ciência Rural, 7:987-993.

Ferreira DF (2019) SISVAR: A computer analysis system to fixed effects split plot type designs. Revista Brasileira de Biometria, 37:529-535.

França S, Mielniczuk J, Rosa LMG, Bergamaschi H & Bergonci JI (2011) Nitrogênio disponível ao milho: crescimento, absorção e rendimento de grãos. Revista Brasileira de Engenharia Agrícola e Ambiental, 15:1143-1151.

Gazzola A, Ferreira Junior CTG, Cunha DA, Bortolini E, Paiao GD, Primiano IV, Pestana J, D’Andréa MSC & Oliveira MS (2012) A Cultura do Girassol. Piracicaba, Escola Superior de Agricultura Luiz de Queiroz. 69p.

Hernández LF (2010) Leaf angle and light interception in sunflower (Helianthus annuus L.). Role of the petiole’s mechanical and anatomical properties. International Journal of Experimental Botany, 79:109-115.

Lobo TF, Filho HG & Brito ICA (2011) Efeito do nitrogênio na nutrição do girassol. Bioscience Journal, 27:380-391.

Loose LH, Heldwein AB, da Silva JR & Bortoluzzi MP (2019) Yield and quality of sunflower oil in Ultisol and Oxisol under water regimes. Revista Brasileira de Engenharia Agrícola e Ambiental, 23:532-537.

Oliveira CR, de Oliveira HL, Barbosa FR, Dario AS, Moura SG & Barros HB (2014) Efeito do nitrogênio em cobertura na produtividade de girassol, no Estado do Tocantins. Científica, 42:233-241.

Pelegrini B (1985) Girassol: uma planta solar que das Américas conquistou o mundo. São Paulo, Ícone. 117p.

Sadras VO & Hall AJ (1988) Quantification of temperature, photoperiod and population effects on plant leaf area in sunflower crops. Field Crops Research, 18:185-196.

Santos HG, Jacomine PKT, dos Anjos LHC, de Oliveira VA , Lumbreras JF, Coelho MR, Almeida JA, de Araújo Filho JC, de Oliveira JB & Cunha TJF (2018) Sistema Brasileiro de Classificação de Solos. 5a ed. Available at: <https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1094003/2/SiBCS2018ISBN9788570358004.pdf>.Accessed on: August 18th, 2020.

Schwerz F, Caron BO, Elli EF, de Oliveira DM, Monteiro GC & de Souza VQ (2016) Avaliação do efeito de doses e fontes de nitrogênio sobre variáveis morfológicas, interceptação de radiação e produtividade do girassol. Revista Ceres, 63:380-386.

Soleymani A (2017) Light response of sunflower and canola as affected by plant density, plant genotype and N fertilization. Journal of Photochemistry & Photobiology, B: Biology, 173:580-588.

Ungaro MRG, Castro C, Farias JRB, Barni N, Ramos NP & Sentelhas PC (2009) Girassol. In: Monteiro JEBA (Ed.) Agrometeorologia dos Cultivos – o fator meteorológico na produção agrícola. Brasília, INMET. p.203-221.

Valeriano TTB, Viana AEC, Neto AP, de Santana MJ & Oliveira AF (2020) Doses de nitrogênio para a cultura do girassol irrigado. Revista Inova Ciência & Tecnologia, 6:05-11.

Zarzicki SA, Mantai RD, Locateli E & Weirich F (2019) Uso da modelagem matemática à produtividade de girassol pelo nitrogênio. UNILUS Ensino e Pesquisa, 16:90-110.

Downloads

Publicado

2025-06-04

Como Citar

Lemainski, L. E., Follmann, D. N., Nied, A. H., Rossato, R. M., Freiberg, C. M., & Brezolim, E. (2025). Interception of photosynthetically active radiation, growth and yield of grains in sunflower under doses of nitrogen. Revista Ceres, 70(6), e70613. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/8174

Edição

Seção

SOIL AND PLANT NUTRITION