Leaf extracts of Clusia fluminensis Planck & Triana with allelopathic potential

Autores

  • Flávio Mauricio Perini IFES/UFES
  • Josinei Rodrigues Filho UFES
  • Alessandro Bermudes IFES/UFES
  • Anderson Mariquito IFES/UFES
  • Viviana Borges Corte UFES
  • Hildegardo Seibert França IFES/UFES

Palavras-chave:

allelopathic effect, seed germination, antioxidant capacity, grass-colonies

Resumo

Our goal was to evaluate the bioherbicide effect of ethanol extract and its fractions of increasing polarity derived from the leaves of Clusia fluminensis, on the germination and initial growth of Lactuca sativa (lettuce) and Megathyrsus maximus (guinea grass), as well as their activity in the catalase, peroxidase, and superoxide dismutase enzymes. For the antioxidant capacity, the DPPH, ABTS, FRAP and phosphomolybdenum tests were used, in addition to the pigment content analysis. Chemical analyses were performed by quantification of total phenol, tannin, and flavonoid contents. The ethyl acetate fraction showed the best result, at concentration 0.75mg/mL, with less influence on lettuces seeds and greater influence on guinea grass seeds. In treatments with ethyl acetate fraction, there was a significant increase in the activity of the three enzymes in lettuce seeds, up to 67% in catalase. The catalase and dismutase enzyme activity decrease in 30% and 19%, respectively in guinea grass seeds. The presence of total phenols, tannins, and flavonoids on the ethyl acetate fraction allow a correlation to the most significant antioxidant activity by the ABTS, DPPH and FRAP assays. The results, therefore, suggest that the ethyl acetate fraction from leaves of C. fluminensis showed phytotoxic potential.

Referências

Islam AKMM, Suttiyut T, Anwar MP, Juraimi AS, Kato-Noguchi H. Allelopathic properties of Lamiaceae species: prospects and challenges to use in agriculture. Plants. 2022;11(11):1478. doi:10.3390/plants11111478 » https://doi.org/10.3390/plants11111478

Aci MM, Sidari R, Araniti F, Lupini A. Emerging trends in allelopathy: a genetic perspective for sustainable agriculture. Agronomy. 2022;12(9):2043.

Caser M, Demasi S, Caldera F, Dhakar NK, Trotta F, Scariot V. Activity of Ailanthus altissima (Mill.) Swingle extract as a potential bioherbicide for sustainable weed management in horticulture. Agronomy. 2020;10(7):990.

Kerrigan RA, Cowie ID, Dixon DJ, Short PS. Clusiaceae. Northern Territory Herbarium, Australia; 2011.

Correia MCR, Benevides CR, Lima HA. Dois casos de poliembrionia em Clusiaceae: Clusia criuva Cambess. e Clusia fluminensis Planch. & Triana. Hoehnea. 2011;38(2):321–4.

García-González M. Acción vaso-periférica del extracto acuoso de las hojas de Clusia coclensis (Clusiaceae). Rev Biol Trop. 1998;46(3):575–8.

Hemshekhar M, Sunitha K, Santhosh MS, et al. An overview on genus Garcinia: phytochemical and therapeutical aspects. Phytochem Rev. 2011;10(3):325-51.

Anholeti MC, Duprat RC, Figueiredo MR, et al. Biocontrol evaluation of extracts and a major component, clusianone, from Clusia fluminensis Planch. & Triana against Aedes aegypti Mem Inst Oswaldo Cruz. 2015;110(5):629-35.

Duprat RC, Anholeti MC, de Sousa BP, et al. Laboratory evaluation of Clusia fluminensis extracts and their isolated compounds against Dysdercus peruvianus and Oncopeltus fasciatus Rev Bras Farmacogn. 2017;27(1):59-66.

da Silva AR, Anholeti MC, Pietroluongo M, et al. Utilization of the plant Clusia fluminensis Planch. & Triana against some toxic activities of the venom of Bothrops jararaca and B. jararacussu Curr Top Med Chem. 2019;19(22):1990-2002.

Oliveira EC, Anholeti MC, Domingos TF, et al. Inhibitory effect of the plant Clusia fluminensis against biological activities of Bothrops jararaca snake venom. [local?]; 2014;9(1):21-5.

Pietroluongo M, Valverde AL, Paiva SR. Potencial de extratos aquosos dos frutos de Clusia fluminensis em neutralizar efeitos locais causados por veneno de Bothrops jararaca Rev Virtual Quím. 2021;13(2):1–8.

Ministério da Agricultura, Pecuária e Abastecimento (MAPA). Regras para análise de sementes. 1ª ed. Brasília: Secretaria de Defesa Agropecuária; 2009.

Casimiro GS, Mansur E, Pacheco G, et al. Allelopathic activity of extracts from different Brazilian peanut (Arachis hypogaea L.) cultivars on lettuce (Lactuca sativa) and weed plants. Sci World J. 2017;2017:1–7.

Krzyzanowski FC, França-Neto JB. Vigor de sementes: conceitos e testes. Londrina: Embrapa Soja; 2001. 28 p. (Circular Técnica, 218).

Oliveira SCC, Ferreira AG, Borghetti F. Efeito alelopático de folhas de Solanum lycocarpum A. St.-Hil. (Solanaceae) na germinação e crescimento de Sesamum indicum L. (Pedaliaceae) sob diferentes temperaturas. Acta Bot Bras. 2004;18(3):401–6.

Fioresi RS, Rodrigues FJ, Perin ITAL, et al. Efeito alelopático de Solanum pimpinellifolium L. sobre a germinação e crescimento inicial de Lactuca sativa e Bidens pilosa Sci Plena. 2021;17(6):1–10.

Gatti AB, Perez SCJGA, Lima MIS. Atividade alelopática de extratos aquosos de Aristolochia esperanzae O. Kuntze na germinação e no crescimento de Lactuca sativa L. e Raphanus sativus L. Acta Bot Bras. 2004;18(3):459–72.

Rufino MSM, Alves RE, Brito ES, Morais SM, Sampaio CG, Pérez-Jiménez J, et al. Metodologia científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Fortaleza: Embrapa Agroindústria Tropical; 2007. (Comunicado Técnico, 127). Disponível em: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/426953/1/Cot127.pdf » https://www.infoteca.cnptia.embrapa.br/bitstream/doc/426953/1/Cot127.pdf

Sánchez-González I, Jiménez-Escrig A, Saura-Calixto F. In vitro antioxidant activity of coffees brewed using different procedures (Italian, espresso, and filter). Food Chem. 2005;90(1–2):133-9.

Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-41.

Peixoto PHP, Cambraia J, Sant’Anna R, Mosquim PR, Moreira MA. Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Rev Bras Fisiol Veg. 1999;11(3):137-43.

Anderson MD, Prasad TK, Stewart CR. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 1995;109(4):1247-53.

Chance B, Maehly AC. Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO, editors. Methods in Enzymology. New York: Academic Press; 1955. p. 764-75.

Kar M, Mishra D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 1976;57(2):315-9.

Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971;44(1):276-87.

Del-Longo OT, González CA, Pastori GM, Trippi VS. Antioxidant defenses under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought. Plant Cell Physiol. 1993;34(7):1023-8.

Lichtenthaler HK, Buschmann C. Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. Curr Protoc Food Anal Chem. 2001;F4.3.1-F4.3.8.

Neves NA, Valente MER, Silva IF. Phenolic composition and extraction methods of Brazilian fruits: jabuticaba (Plinia spp.), açaí (Euterpe oleraceae Mart.), jussara (Euterpe edulis Mart.) and cocoa (Theobroma cacao L.). Res Soc Dev. 2022;11(2):e23211225640.

Seigler DS, Seilheimer S, Keesy J, Huang HF. Tannins from four common Acacia species of Texas and Northeastern Mexico. Econ Bot. 1986;40(2):220-32.

Djeridane A, Yousfi M, Nadjemi B, et al. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006;97(4):654-60.

Jmii G, Molinillo JM, Zorrilla JG, Haouala R. Allelopathic activity of Thapsia garganica L. leaves on lettuce and weeds, and identification of the active principles. S Afr J Bot. 2020;131:188-94.

Rajput VD, Singh RK, Verma KK, et al. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology (Basel). 2021;10(4):267.

Cheng F, Cheng Z. Corrigendum: research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci. 2016;7:598.

Melo BP, Carpinetti PA, Fraga OT, et al. Abiotic stresses in plants and their markers: a practice view of plant stress responses and programmed cell death mechanisms. Plants. 2022;11(9):1100.

Silva MCA, Paiva SR. Antioxidant activity and flavonoid content of Clusia fluminensis Planch. & Triana. An Acad Bras Cienc. 2012;84(3):609-16.

Wang LX, Wang HL, Huang J, et al. Review of lignans from 2019 to 2021: Newly reported compounds, diverse activities, structure–activity relationships, and clinical applications. Phytochemistry. 2022;202:113326.

Ribeiro MMJ, Macedo AL, Anholeti MC, et al. Atividade antioxidante, doseamento de flavonoides e perfil químico em extratos de Clusia grandiflora (Clusiaceae). Rev Bras Pl Med. 2017;19(3):443-9.

Downloads

Publicado

2025-06-30

Como Citar

Perini, F. M., Rodrigues Filho, J., Bermudes, A., Mariquito, A., Borges Corte, V., & Seibert França, H. (2025). Leaf extracts of Clusia fluminensis Planck & Triana with allelopathic potential. Revista Ceres, 72, e72015. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/8194

Edição

Seção

CROP PRODUCTION