Influence of 6-benzylaminopurine and culture medium on the regeneration of axillary shoots of Psidium cattleyanum Sabine cultivars Ya-cy and Irapuã

Autores

  • Alexandre Klas Bico UFPR
  • Juliana Degenhardt Embrapa
  • Luciana Lopes Fortes Ribas UFPR

Palavras-chave:

araçá, Myrtaceae, native fruit, cytokinin, plant growth regulator, MS medium

Resumo

Psidium cattleyanum, commonly known as araçá, is a fruit tree valued for its nutritional benefits and is increasingly consumed fresh and processed. However, the genetic variability within its populations makes selecting and propagating individuals with desirable traits challenging. This study aimed to optimize the in vitro shoot regeneration from axillary buds of Irapuã and Ya-cy cultivars using a complete MS culture medium and half-strength MS basal salts (MS/2), supplemented with 6-benzylaminopurine (BAP). Apical shoots from in vitro germinated plantlets were placed on MS or MS/2 medium, supplemented with 2.2, 4.4, or 8.8 µM BAP, and a control without BAP. For the Irapuã cultivar, the highest shoot regeneration rate was achieved on MS/2 medium with 2.2 µM BAP during the third subculture, resulting in 100% of the explants producing shoots. In contrast, the Ya-cy cultivar showed the best results on MS/2 medium with 4.4 µM BAP, yielding up to 78.3% shoot formation in the first subculture. Both cultivars were rooted on MS/2 culture medium without plant growth regulators, with cv. Irapuã achieving up to 100% rooting and cv. Ya-cy 41.2%. A micropropagation protocol was successfully developed for the Irapuã and Ya-cy cultivars.

Referências

Lisbôa GV, Kinupp VF, de Barros IB. Psidium cattleianum Araçá. In: Coradin L, Siminski A, Reis A, editors. Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro – Região Sul. Brasília: Ministério do Meio Ambiente; 2011. p.205-8.

Lorenzi H, de Lacerda MT, Bacher LB. Frutas no Brasil nativas e exóticas (de consumo in natura). São Paulo: Instituto Plantarum de Estudos da Flora; 2015.

Tuler AC, Costa IR, Proença CE. Psidium in Flora e Funga do Brasil [Internet]. Rio de Janeiro: Jardim Botânico do Rio de Janeiro; 2024 [cited 2024 Nov 15]. Available from: https://floradobrasil.jbrj.gov.br/FB10858

Patel S. Exotic tropical plant Psidium cattleianum: a review on prospects and threats. Rev Environ Sci Biotechnol. 2012;11:243-8. https://doi.org/10.1007/s11157-012-9269-8

Pereira ES, Vinholesa J, Franzon RC, Dalmazob G, Vizzotto M, Norab L. Psidium cattleianum fruits: a review on its composition and bioactivity. Food Chem. 2018;258:95-103. https://doi.org/10.1016/j.foodchem.2018.03.024

Elsayed HE, El-Deeb EM, Taha H, Taha HS, Elgindi MR, Moharram FA. Essential oils of Psidium cattleianum Sabine leaves and flowers: anti-inflammatory and cytotoxic activities. Front Chem. 2023;11. https://doi.org/10.3389/fchem.2023.1120432

Seraglio SK, Schulz M, Silva B, Deolindo CT, Hoff RB, Gonzaga LV, et al. Chemical constituents and antioxidant potential of red guava (Psidium cattleianum Sabine) from southern Brazil in different edible ripening stages. Plant Foods Hum Nutr. 2024;79(1):166-72. https://doi.org/10.1007/s11130-024-01141-6

Santos PC, Gallo R, Silva GC, Nonato ER, Sousa MB, Silva CL. Genetic potential and breeding strategies in Psidium cattleianum Sabine: a bibliometric analysis. J Crop Improv. 2024;38(5):513-49. https://doi.org/10.1080/15427528.2024.2375274

Pereira ES, Raphaelli O, Radunz M, Camargo TM, Vizzotto M. Biological activity and chemical composition of native fruits: a review. Agrociência Uruguay. 2021;25:1-19. https://doi.org/10.31285/agro.25.815

Franzon RC, Campos LD, Proença CE, Sousa-Silva JC. Araçás do gênero Psidium: principais espécies, ocorrência, descrição e usos [Internet]. Planaltina: Embrapa Cerrados; 2009 [cited 2024 Nov 15]. Available from: https://www.infoteca.cnptia.embrapa.br/bitstream/doc/697560/1/doc266.pdf

Camargo HV, Walter LS, Gabira MM, Kratz D. Pre-germinative treatments and seed storage of Psidium cattleyanum Sabine morphotypes. Colloq Agraria. 2020;16(4):102-9. https://doi.org/10.5747/ca.2020.v16.n4.a387

Tafarel AZ, Silvestre WP, Pansera MR, Rodrigues LS, Sartori VC. Seed dormancy and germination in Psidium cattleyanum Sabine (red and yellow araçá). Interdiscip J Appl Sci. 2021;5(9):20-7. https://doi.org/10.18226/25253824.v5.n9.03

Schwengber JE, Dutra L, Kersten E. Efeito do sombreamento da planta matriz e do PVP no enraizamento de estacas de ramos de araçazeiro (Psidium cattleyanum Sabine). Curr Agric Sci Technol. 2000;6:30-4.

Rodriguez EA, Pradella EM, Souza PV, Schafer G. Asexual propagation of araçá (Psidium cattleianum Sabine) by leaf and young branches cuttings. Rev Árvore. 2016;40:707-14. https://doi.org/10.1590/0100-67622016000400014

Abdalla N, El-Ramady H, Seliem MK, El-Mahrouk ME, Taha N, Bayoumi Y, et al. An academic and technical overview on plant micropropagation challenges. Horticulturae. 2022;8:677. https://doi.org/10.3390/horticulturae8080677

Freire CG, Gardin JP, Baratto CM, Vieira RL, Werner SS. Micropropagation’s complete protocol of red araçá (Psidium cattleianum, Myrtaceae) from germinated seeds in vitro. J Agric Sci. 2018;10:234-5. https://doi.org/10.5539/jas.v10n2p234

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473-97. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Arruda AL, Buss M, Silva PS, Nerbass FR, Kretzschmar AA, Rufato L. Estabelecimento in vitro de sementes de Psidium cattleianum Sabine. Acta Biol Catarinense. 2019;6:105-13.

Phillips GC, Garda M. Plant tissue culture media and practices: an overview. In Vitro Cell Dev Biol Plant. 2019;55:242-57. https://doi.org/10.1007/s11627-019-09983-5

Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. J R Stat Soc Ser C Appl Stat. 2005;54:507-54. https://doi.org/10.1111/j.1467-9876.2005.00510.x

R Core Team. R: a language and environment for statistical computing [Internet]. Vienna: R Foundation for Statistical Computing; 2024 [cited 2024 Nov 15]. Available from: https://www.R-project.org/

Wybouw B, De Rybel B. Cytokinin – a developing story. Trends Plant Sci. 2019;24(2):177-85. https://doi.org/10.1016/j.tplants.2018.10.012

Sosnowski J, Truba M, Vasileva V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture. 2023;13(3):724.

Svolacchia N, Sabatini S. Cytokinins. Curr Biol. 2023;33(1). https://doi.org/10.1016/j.cub.2022.11.022

Joshee N, Mutua M, Yadav AK, Zee F. In vitro shoot bud induction and plantlet regeneration in guava as influenced by genotype. Acta Hortic. 2004;632:279–85. https://doi.org/10.17660/actahortic.2004.632.36

Sant’Ana CRDO, Paiva R, Reis MVD, Silva DPCD, Silva LC. In vitro propagation of Campomanesia rufa: an endangered fruit species. Ciênc Agrotec. 2018;42:372-80. https://doi.org/10.1590/1413-70542018424011018

Mazzoni-Putman SM, Brumos J, Zhao C, Alonso JM, Stepanova AN. Auxin interactions with other hormones in plant development. Cold Spring Harb Perspect Biol. 2021;13:10. https://doi.org/10.1101/cshperspect.a039990

Kurepa J, Smalle JA. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. Int J Mol Sci. 2022;23:4. https://doi.org/10.3390/ijms23041933

Downloads

Publicado

2025-09-01

Como Citar

Bico, A. K., Degenhardt, J., & Ribas, L. L. F. (2025). Influence of 6-benzylaminopurine and culture medium on the regeneration of axillary shoots of Psidium cattleyanum Sabine cultivars Ya-cy and Irapuã. Revista Ceres, 72, e72027. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/8207

Edição

Seção

VEGETATIVE AND SEMINIFEROUS PROPAGATION