Caracterização química de compostos e vermicompostos produzidos com casca de arroz e diferentes dejetos animais

Autores

  • Elaine Luiza Biacchi Vione Instituto Federal de Educação, Ciência e Tecnologia Farroupilha- Câmpus Santo Augusto-RS
  • Leandro Souza da Silva Universidade Federal de Santa Maria
  • Alberto Cargnelutti Filho Universidade Federal de Santa Maria
  • Natalia Tobin Aita Universidade Federal de Santa Maria
  • Alexssandro de Freitas de Morais Universidade Federal de Santa Maria
  • Allan Augusto Kokkonen da Silva Universidade Federal de Santa Maria

Palavras-chave:

análise química, fracionamento de fibras, reciclagem, sustentabilidade

Resumo

A agropecuária brasileira gera quantidade significativa de resíduos que muitas vezes causam problemas ambientais se não forem utilizados adequadamente. Entretanto, seu uso depende das características do material geralmente após uma estabilização biológica, como a compostagem e a vermicompostagem. Neste trabalho foram elaborados compostos e vermicompostos orgânicos com três tipos de dejetos (aves, bovinos e suínos) e casca de arroz. Após estabilização, os compostos e vermicompostos foram avaliados quanto a composição química, visando relacionar com sua adequação ao uso agrícola e potencial fertilizante. Os dejetos contribuíram para as diferenças obtidas entre os compostos e vermicompostos. A menor relação C/N, menor teor de C, e a maior relação CTC/C nos compostos e vermicompostos demonstrou que o processamento favoreceu a degradação dos resíduos orgânicos e a estabilização. Os compostos e os vermicompostos foram similares, exceto na CE e nos teores de K e NO3, que foram menores no vermicomposto. Maior fração solúvel e os menores teores de celulose, lignina e relação celulose/lignina foram encontrados quando utilizado dejeto bovino. Tanto a compostagem quanto a vermicompostagem aumentou a degradação da casca de arroz, contribuindo para o destino adequado dos resíduos.

Referências

Abbasi MK, Tahir MM, Sabir N & Khurshid M (2015) Impact of the addition of different plant residues on nitrogen mineralization–immobilization turnover and carbon content of a soil incubated under laboratory conditions. Solid Earth, 6:197–205.

Aita C & Giacomini SJ (2008) Nitrato no solo com a aplicação de dejetos líquidos de suínos no milho em plantio direto. Revista Brasileira de Ciência do Solo, 32:2101-2111.

A&L Canada Laboratories Inc (2004) Compost Management Program. Disponível em: <http://www.alcanada.com/index_htm_files/Compost_Handbook.pdf>. Acessado em: 31 de março de 2016.

Bateman A & Kelly S (2006) Discriminating between organically and conventionally grown crops using stable isotope and multi-element analysis. Final report on 3-year project + 6-month extension. UEA - Norwich/Institute of Food Research - Colney, Norwich, 151 p.

Bernal MP, Paredes C, Sánchez-Monedero MA & Cegarra J (1998) Maturity and stability parameters of composts prepared with a, wide range of organic wastes. Bioresource Technology, 63: 91-99.

Bernal MP, Alburquerque, JA & Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment: A review. Bioresource Technology, 100: 5444–5453.

Brasil (2009) Instrução Normativa nº. 25, de 23 de julho de 2009. Normas sobre as especificações e as garantias, as tolerâncias, o registro, a embalagem e a rotulagem dos fertilizantes orgânicos simples, mistos, compostos, organominerais e biofertilizantes

destinados à agricultura. D.O.U. 28/07/2009, Seção 1, p. 20.

Cabrera ML, Kissel DE & Vigil MF (2005) Nitrogen Mineralization from Organic Residues: Research Opportunities. Journal of Environmental Quality, 34:75-79.

Chalk PM, Magalhães AMT & Inácio CT (2012) Towards an understanding of the dynamics of compost N in the soil-plant-atmosphere system using 15N tracer. Plant Soil. DOI 10.1007/s11104-012-1358-5.

Comissão de Química e Fertilidade do Solo (CQFS) (2016) Manual de Calagem e Adubação para os Estados do Rio Grande do Sul e de Santa Catarina. SBCS, NRS-[s.l.]. 376p.

Cotta JAO, Carvalho NLC, Brum TS & Rezende MOO (2015) Compostagem versus vermicompostagem: comparação das técnicas utilizando resíduos vegetais, esterco bovino e serragem. Engenharia Sanitária Ambiental, 20: 65-78.

Domínguez J & Edwards CA (2011) Relationships between composting and vermicomposting. In: Edwards CA, Arancon, NQ & Sherman RL (Eds.) Vermiculture Technology: Earthworms, Organic Waste and Environmental Management. Boca Raton, Florida. CRC Press. p. 11-25. Disponível em: <http://webs.uvigo.es/jdguez/wp-content/uploads/2012/01/Relationships-between-Composting-and-Vermicomposting.pdf>. Acessado em: 31 de dezembro de 2014.

Dores-Silva PR, Landgraf, MD & Rezende MO de O (2013) Processo de estabilização de resíduos orgânicos: vermicompostagem versus compostagem. Quimica Nova, 36: 640-645. Disponível em:< http://quimicanova.sbq.org.br/qn/qnol/2013/vol36n5/04-AR12554.pdf>. Acessado em: 30 de julho de 2013.

Frederickson J, Howell G & Hobson AM (2007) Effect of pre-composting and vermicomposting on compost characteristics. European Journal of Soil Biology, 43: S320-S326.

Gómez-Brandón M, Lazcano C, Lores M & Domínguez J (2010) Detritivorous earthworms modify microbial community structure and accelerate plant residue decomposition. Applied Soil Ecology, 44: 237–244.

Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T & Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. Federation of European Microbiological Societies. Microbiology Ecology, 90:1–17.

Hernández-Rodríguez OA, López-Díaz JC, Arras-Vota AM, Quezada-Solís J & Ojeda-Barrios D (2012). Quality of vermicompost obtained from residues of forestry and livestock. Sustainable Agriculture Research, 1:70-76. Disponível em: <http://www.ccsenet.org/journal/index.php/sar/article/view/14546/0>. Acessado em 05 de agosto de 2013.

Kiehl EJ (1985) Fertilizantes Orgânicos. Piracicaba: Editora Agronômica “Ceres” Ltda. 492p.

Komilis DP & Ham RK (2003) The effect of lignin and sugars to the aerobic decomposition of solid wastes. Waste Management, 23: 419–423.

Lazcano C, Gómez-Brandón M & Domínguez J (2008) Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72: 1013–1019.

Lim SS, Lee SM, Lee SH & Choi WJ (2010) Nitrogen isotope compositions of synthetic fertilizer, raw livestock manure slurry, and composted livestock manure. Korean Journal of Soil Science and Fertilizer, 43:453-457.

Lynch DH, Voroney RP & Warman PR (2006) Use of 13C and 15N natural abundance techniques to characterize carbon and nitrogen dynamics in composting and in compost-amended soils. Soil Biology & Biochemistry, 38: 103–114.

Malik K, Tokkas J, Anand RC & Kumari N (2015) Pretreated rice straw as an improved fodder for ruminants-An overview. Journal of Applied and Natural Science, 7: 514 – 520.

Moral R, Paredes C, Bustamante MA, Marhuenda-Egea F& Bernal MP (2009) Utilisation of manure composts by high-value crops: Safety and environmental challenges. Bioresource Technology, 100: 5454–5460.

Murphy J & Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, 27:31-36.

Ngo PT, Rumpel C, Ngo QA, Alexis M, Vargas GV, Gil MLM, Dang DK & Jouquet P (2013) Biological and chemical reactivity and phosphorus forms of buffalo manure compost, vermicompost and their mixture with biochar. Bioresource Technology, 148: 401–407.

Paradelo R, Moldes AB, Barral MT (2013) Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes. Journal of Environmental Management, 116:18 -26.

Rodella AA & Alcarde JC (1994) Avaliação de materiais orgânicos empregados como fertilizantes. Scientia Agricola, 51:556-562

Santos FG, Escostegy PAV & Rodrigues LB (2010) Qualidade de esterco de ave poedeira submetido a dois tipos de tratamentos de compostagem. Revista Brasileira de Engenharia Agrícola e Ambiental, 14:1101–1108.

Scherer EE, Nesi CN & Massotti Z (2010) Atributos químicos do solo influenciados por sucessivas aplicações de dejetos suínos em áreas agrícolas de Santa Catarina. Revista Brasileira de Ciência do Solo, 34:1375-1383.

Silva, FC (2009) Manual de análises químicas de solos, plantas e fertilizantes. 2ª ed. Brasília, DF: Embrapa Informação Tecnológica, 627 p.

Sun X, Lu P, Jiang T, Schuchardt F, Li G (2014) Influence of bulking agents on CH4, N2O, and NH3 emissions during rapid composting of pig manure from the Chinese Ganqinfen system. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 15:353-364.

Swarnam TP, Velmurugan A, Pandey SK & Roy SD (2016) Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology. Bioresource Technology, 207:76–84.

Tedesco MJ, Gianello C, Bissani CA, Bohnen H & Volkweiss SJ (1995) Análises de solo, plantas e outros materiais. 2a ed. Porto Alegre: Universidade Federal do Rio Grande do Sul, 174p. (Boletim técnico, 5).

Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 72: 169-183.

Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds. I. Preparation of fiber residues of low nitrogen content. Journal of the Association of Official Agricultural Chemists, 46:825–829.

Woods End (2005) Woods End Research Laboratory Interpreting Waste & Compost Tests. Journal of the Woods End Research Laboratory. Disponível em: http://www.woodsend.org>. Acessado em 10 de fevereiro de 2016.

Wu G, Qu P, Sun E, Chang Z, Xu Y & Huang H (2015) Physical, chemical, and rheological properties of rice husks treated by composting process. BioResources, 10:227-239.

Zeng Y, Guardia A, Daumoin M & Benoist JC (2012) Characterizing the transformation and transfer of nitrogen during the aerobic treatment of organic wastes and digestates. Waste Management, 32: 2239–2247.

Publicado

2018-12-20

Edição

Seção

SOLOS E NUTRIÇÃO DE PLANTAS