Estímulos químico e mecânico na rustificação de mudas de eucalipto
Palavras-chave:
jasmonic acid, stem flexures, quality of seedlings, clone 1528Resumo
The objective of this work was to evaluate the quality of eucalyptus clone 1528 seedlings after hardening with application of jasmonic acid (JA) and stem bending. The experiment was conducted in two stages: the first, in a protected environment, and the second, in the field. A completely randomized experimental design with seven treatments (control, 2.0, 4.0, 6.0, and 8.0 ìmol L-1 of JA applied weekly for four weeks and 20 and 40 daily push-ups for four weeks) and five replicates of twenty seedlings. At the end of the treatments, the increase in height, root collar diameter, number of leaves, root and shoot dry matter, and relative chlorophyll index (SPAD) were determined. At 90 days after planting (field), the increases in height and root collar diameter and the height/diameter ratio of the seedlings were evaluated. A clustering analysis by UPGMA showed a formation of three groups: group 1 (control, 2.0, 4.0, and 6.0 ìmol L-1 of JA), group 2 (8.0 ìmol L-1 of JA), and group 3 (stem bending). Seedlings that showed the greatest increase in height and number of leaves (groups I and II) during the hardening phase obtained higher increase in height and in the root collar diameter in the field at 90 days after planting. Parameters such as increase in root collar diameter, root regeneration potential, and SPAD quantified during the hardening of seedlings in the nursery are not predictive of higher performance in the field.
Referências
Addinsoft SARL (2009) XLSTAT software. version 9.0. Paris, Addinsoft. CD-ROM.
Bhering SB, Santos HG, Manzatto CV, Bognola I, Fasolo PJ, Carvalho AP, Potter O & Curcio G (2007) Mapa de solos do Estado do Paraná: escala 1:250.000: legenda. Rio de Janeiro, Embrapa Solos. 73p.
Biro R & Jaffe MJ (1984) Thigmomorphogensis: ethylene evolution and its role in the changes observed in mechanically perturbed bean plants. Physiologia Plantarum, 62:289-296.
Braam J (2005) In touch: respostas das plantas aos estímulos mecânicos. New Phytologist, 165:373-389.
Cadorin DA, Malavasi UC, Coutinho PWR, Dranski JAL & Malavasi MM (2015) Metil jasmonato e flexões caulinares na rustificação e crescimento inicial de mudas de Cordia trichotoma. Cerne, 21:657-664.
Carvalho AM & Nahuz MAR (2001) Valorização da madeira do híbrido Eucalyptus grandis x Eucalyptus urophylla através da produção conjunta de madeira serrada em pequenas dimensões, celulose e lenha. Scientia Forestalis, 59:61-76.
Caviglione JH, Kiihl LRB, Caramori PH & Oliveira D (2000) Cartas climáticas do Paraná. Londrina, IAPAR. CD-ROM.
Creelman RA & Mullet JE (1997) Biosynthesis and action of jasmonate in plants. Annual Review of Plant and Molecular Biology, 48:355-381.
Davis AS & Jacobs DF (2005) Quantifying root system quality of nursery seedlings and relationship to out planting performance. New Forests, 30:295-311.
Dranski JAL, Malavasi UC & Malavasi MM (2015) Relationship between lignin content and quality of Pinus taeda seedlings. Revista Árvore, 39:905-913.
Dranski JAL (2013) Tigmomorfogênese na rustificação e sobrevivência em mudas de Pinus taeda L. Tese de Doutorado. Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon. 107p.
Dong T, Li J, Zhang Y, Korpelainen H, Niinemets Ü & Li C (2015) Partial shading of lateral branches affects growth and foliage nitrogen and water use efficiencies in the conifer Cunninghamia lanceolate growing in a warm monsoon climate. Tree Physiology, 35:632-643.
Fan X, Matheis JP & Fellman JK (1998) A role for jasmonates in climacteric fruit ripening. Planta, 204:444-449.
Fonseca EP, Valéri SV, Miglioranza E, Fonseca N & Couto L (2002) Padrão de qualidade de mudas de Trema micrantha (L.) Blume, produzidas sob diferentes períodos de sombreamento. Revista Árvore, 26:515-523.
Salisbury FB & Ross CW (2013) Fisiologia das plantas. 4ª ed. São Paulo, Cengage Learning. 792p.
Gomes JM, Couto L, Leite HG, Xavier A & Garcia SLR (2002) Parâmetros morfológicos na avaliação da qualidade de mudas de Eucalyptus grandis. Revista Árvore, 26:655-664.
Gonçalves KS, Sousa AP & Velini EDS (2015) Aplicação de reguladores vegetais e de fosfito de potássio em mudas de eucalipto submetidas à deficiência hídrica. Irriga, 20:273-285.
Grossnickle SC (2012) Why seedlings survive: influence of plant attributes. New Forests, 43:711-738.
Handa IT, Körner C & Hättenschwiler S (2006) Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment. Global Change Biology, 12:2417-2430.
Hudgins JW & Franceschi RV (2004) Methyl jasmonate-induced ethylene production is responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiology, 135:2134-2149.
Ishihara KL, Lee EKW & Borthakur D (2017) Thigmomorphogenesis: changes in morphology, biochemistry, and levels of transcription in response to mechanical stress in Acacia koa. Canadian Journal of Forest Research, 47:583-593.
Jaffe MJ (1973) Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation. Planta, 114:143-156.
Landis TD, Dumroese RK & Haase DL (2010) The container tree nursery manual: seedling processing, storage, and out planting. Washington, Department of Agriculture Forest Service. 200p.
Kern AK, Wers WF, Telewski WF & Koehler L (2005) Mechanical perturbation affects conductivity, mechanical properties and aboveground biomass of hybrid poplars. Tree Physiology, 25:1243-1251.
Mazzuchelli EHL, Souza G & Pacheco AC (2014) Rustificação de mudas de eucalipto via aplicação de ácido salicílico. Pesquisa Agropecuária Tropical, 44:443-450.
Mojena R (1977) Hierarchical grouping methods and stopping rules: an evaluation. The Computer Journal, 20:359-363.
Morel P, Crespel L, Galopinc G & Mouliad B (2012) Effect of mechanical stimulation on the growth and branching of garden rose. Scientia Horticulturae, 135:59-64.
Oro P, Volkweis RC, Neiverth W, Dranski JAL, Malavasi UC & Malavasi MM (2011) Aplicação de regulador vegetal na aclimatação de mudas de Cariniana estrellensis. Cultivando o Saber, 5:103-112.
Portal Florestal (2015) Clone – AEC 1528 – Super Clone. Disponível em: <http://www.portalflorestal.com.br/portfolio/mudasde-eucalipto-clonado-a-venda-clone-aec-1528-super-clone/>. Acessado em: 08 de novembro de 2016.
Ribeiro Júnior JI & Melo ALP (2008) Guia prático para utilização do SAEG. Viçosa, Folha. 288p.
UFV - Universidade Federal de Viçosa (2007) SAEG: Sistema para Análises Estatísticas. versão 9.1. Viçosa, Fundação Arthur Bernardes. CD-ROM.
Saidi I, Ammar S, Demont-Caulet N, Thévenin J, Lapierre C, Bouzid S & Jouanin L (2009) Thigmomorphogenesis in Solanum lycopersicum: morphological and biochemical responses in stem after mechanical stimulation. Plant Science, 177:01-06.
Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Lumbreras JF, Coelho MR, Almeida JÁ, Cunha TJF & Oliveira JB (2013) Sistema brasileiro de classificação de solos. 3ª ed. Brasília, Embrapa. 353p.
Shannon DK & Thomas JD (2018) Growth of tree diameter and stem taper as affected by reduced leaf area on selected branch whorls. Canadian Journal of Forest Research, 48:317-323.
Singh D (1981) The relative importance of characters affecting genetic divergence. Indian Journal of Genetic and Plant Breeding. New Delhi, 41:237-245.
Susiluoto S, Hilasvuori E & Berninger F (2010) Testing the growth limitation hypothesis for subarctic Scots pine. Journal of Ecology, 98:1186-1195
Taiz L, Zeiger E, Moller IM & Murphy A (2017) Fisiologia e desenvolvimento vegetal. 6ª ed. Porto Alegre, Artmed. 954p.
Telewski FW & Pruyn ML (1998) Thigmomorphogenesis: a dose response to flexing in Ulmus americana seedlings. Tree Physiology, 18:65-68.
Volkweis RC, Dranski JAL, Oro P, Malavasi UC & Malavasi MM (2014) Efeito da tigmomorfogênese na morfometria de mudas de Maytenus ilicifolia (Schrad.) Planch. Ciência Florestal, 24:339-342.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.