Morphophysiological changes in seedlings of two wood species after application of salicylic acid

Autores

  • Maria Eunice Lima Rocha Unioeste
  • Fernanda Ludmyla Barbosa de Souza Unioeste
  • Maria Soraia Fortado vera Cruz Unioeste
  • Pablo Wenderson Ribeiro Coutinho Unioeste
  • Marlene de Matos Malavasi Unioeste
  • Ubirajara Contro Malavasi Unioeste

Palavras-chave:

forest species;, lignin;, morphometric parameters;, regulators;, seedlings.

Resumo

The forestry production sector uses several strategies to minimize post-planting seedling losses. Some practices can modulate characteristics of interest for plant growth and defense, including changes in the light exposure, reduced watering, fertilization, and chemical or mechanical stimulus. This work quantified morphophysiological changes on Schinus terebinthifolius and Cedrela fissilis seedlings resulting from the application of salicylic acid for eight weeks. The experimental design was completely randomized, composed of four treatments (0, 100, 200, and 300 mg L-1 of salicylic acid). The quantified variables included height, diameter, and dry matter mass of the root and aerial parts. Additionally, leaf area, root-cell electrolyte loss, lignin content in roots, and stem plus phenolic compounds were quantified. On aroeira seedlings, the height, aerial, and radicular dry matter masses and leaf area were reduced while the diameter and the lignin content increased directly as a function of salicylic acid doses. In cedro seedlings the dose
of 100 mg L-1, however, resulted in a better balance of plant biomass and would, therefore, be the most indicated dose for the species. The application of salicylic acid for 8 weeks on seedlings of both species resulted in the most relevant morphophysiological modifications correlated with quality characteristics of seedlings of woody species.

Referências

Alvares CA, Stape JL, Sentelhas PC, Gonçalves JL de M & Sparovek GK (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22:711-728.

Awate PD & Gaikwad DK (2014) Influence of growth regulators on secondary metabolites of medicinally important oil yielding plant Simarouba glauca DC. under water stress conditions. Journal Stress Physiology and Biochemistry, 10:222-229.

Biernaski FA, Higa AR & Silva LD (2012) Genetic variability for juvenile characters of Cedrela fissilis Vell. Progenies: a subsidy for definition of seed collection zone. Revista Árvore, 36:49-58.

Bobato ACC, Opazo MAU, Nóbrega LHP & Martins GI (2008) Métodos comparativos para recomposição de áreas de mata ciliar avaliados por análise longitudinal. Acta Scientiarum Agronomy, 30:89-95.

Cadorin DA, Malavasi UC, Coutinho PWR, Dranski JAL & Malavasi MdeM (2015) Metil jasmonato e flexões caulinares na rustificação e crescimento inicial de mudas de Cordia trichotoma. Cerne, 21:657-664.

Caires SM, Fontes MPF, Fernandes RBA, Neves CL & Fontes RLF (2011) Desenvolvimento de mudas de cedro-rosa em solo con- taminado com cobre: tolerância e potencial para fins de fitoestabilização do solo. Revista Árvore, 35:1181-1188.

Campos AD (2009) Considerações sobre indução de resistência a patógenos em plantas. Brasília, Embrapa. 28p.

Carvalho MG, Melo AGN, Aragão CFS, Raffin FN & Moura TFAL (2013) Schinus terebinthifolius Raddi: composição química, propriedades biológicas e toxicidade. Revista Brasileira De Plantas Medicinais, 15:158-169.

D’Avila FS, Paiva HN, Leite HG, Barros NF & Leite FP (2011) Efeito do potássio na fase de rustificação de mudas clonais de eucalipto. Revista Árvore, 35:13-19.

Del Campo AD, Navarro RM & Ceacero ECJ (2010) Seedling quality and field performance of commercial stocklots of containerized holm oak (Quercus ilex) in Mediterranean Spain, an approach for establishing a quality standard. New Forests, 39:19-37.

Dranski JAL, Malavasi UC, Malavasi M de M & Jacobs DF (2013) Effect of ethephon on hardening of Pachystroma longifolium seedlings. Revista Árvore, 37:401-407.

Ferreira TS, Heldwein AB, Dos Santos CO, Somavilla JC & Sautter CK (2016) Substâncias fenólicas, flavonoides e capacidade antioxidante em erveiras sob diferentes coberturas do solo e sombreamentos. Revista Brasileira de Plantas Medicinais, 18:588-596.

Georgé S, Brat P, Alter P & Amiot MJ (2005) Rapid determination of polyphenols and vitamin C in plant derived products. Journal of Agricultural and Food Chemistry, 53:1370-1373.

Gilbert B & Favoreto R (2011) Schinus terebinthifolius Raddi. Revista Fitossanitária, 6:43-56.

Gomes DR, Caldeira MVW, Delarmelina WM, Gonçalves EO & Trazzi PA (2013) Lodo de esgoto como substrato para a produção de mudas de Tectona grandis L. Cerne, 19:123-131.

Guo J, Yanga Y, Wanga G, Yanga L & Suna W (2010) Ecophysiological responses of Abiesfabri seedlings to drought stress and nitrogen supply. Physiologia Plantarum, 139:335-347.

Hara M, Furukawa J, Sato A, Mizoguchi T & Miura K (2012) Abiotic stress and role of salicylic acid in plants. In: Parvaiza A & Prasad MNV (Eds.) Abiotic Stress Responses in Plants. New York, Springer. p.35-251.

Hoagland DR & Arnon DI (1950) The water culture method for growing plants without soils. Berkeley, California Agricultural Experimental Station. 347p.

Jacobs DF & Landis TD (2009) Nursery manual for native plants: Guide for tribal nurseries. Washington, Department of Agriculture. 20p.

Landis TD, Dumroese RK & Haase DL (2010) The container tree nursery manual: seedling processing, storage, and outplanting. 7a ed. Washington, Department of Agriculture. 199p.

Malavasi UC, Davis AS & Malavasi M de M (2016) Lignin in woody plants under water stress: a review. Revista Floresta e Ambiente, 23:589-597.

Marjamaa K, Kukkola EM & Fagerstedt KV (2009) The role of xylem class III peroxidases in lignification. Journal of Experimental Botany, 60:367-376.

Mazzuchelli EHL, Souza GM & Pacheco AC (2014) Rustificação de mudas de eucalipto via aplicação de ácido salicílico. Pesquisa Agropecuária Tropical, 44:443-450.

Miura K & Tada Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers Plant Science, 5:01-19.

Ncube B, Finnie JF & Staden JV (2012) Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany, 82:11-20.

Nitsche PR, Caramori PH, Ricce W Da S & Pinto LFD (2019) Atlas Climático do Estado do Paraná. Londrina, IAPAR. 216p.

Oro P, Volkweis CR, Neiverth W, Dranski JAL, Malavasi UC & Malavasi M de M (2012) Aplicação de regulador vegetal na aclimatação de mudas de Cariniana estrellensis. Cultivando o Saber, 5:103-112.

Ramakrishna A & Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior, 6:1720-1731.

Rivas-San VM & Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62:3321-3338.

Rogers LA & Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytologist, 164:1-17.

Saracho LCS, Lima NM, Santos CC, Scalon SPQ & Vieira MC (2021) Salicylic Acid Increases Growth of Schinus terebinthifolia Seedlings Subjected to Varyng Irrigation Intervals. Floresta e Ambiente, 28:01-10.

Silva MLC, Costa RS, Santana AS & Koblitz MGB (2010) Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais. Semina: Ciências Agrárias, 31:669-682.

Taiz L, Zeiger E, Møller IM & Murphy A (2017) Estresse abiótico. In: Blumwald E & Mittler R (Eds.) Fisiologia Vegetal. Porto Alegre, Artmed. p.731-759.

Van Soest PJ (1994) Nutritional ecology of the ruminant. 2nd ed. Ithaca, Cornell University Press. 476p.

Wilner J (1955) Results of laboratory tests for winter hardines sofwoody plants by electrolyte methods. Proceedings American Horticultura Science, 66:93-99.

Wittek F, Kanawati B, Wenig M, Hoffmann T, Franz-Oberdorf K, Schwab W & Vlot AC (2015) Folic acid induces salicylic acid dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. Molecular Plant Pathology, 16:616-622.

Yuan S & Lin HH (2008) Role of salicylic acid in plant abiotic stress. Zeitschrift für Naturforschung C, 63:313-320.

Downloads

Publicado

2025-05-26

Como Citar

Lima Rocha, M. E., Barbosa de Souza, F. L., Fortado vera Cruz, M. S., Ribeiro Coutinho, P. W., de Matos Malavasi, M., & Contro Malavasi, U. (2025). Morphophysiological changes in seedlings of two wood species after application of salicylic acid. Revista Ceres, 69(2), 158–166. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/7971

Edição

Seção

CROP PRODUCTION

Artigos mais lidos pelo mesmo(s) autor(es)