The management of orthotropic stems modulates the photosynthetic performance and biomass allocation of productive plants of Arabica coffee

Autores

  • Tafarel Victor Colodetti UFES
  • Wagner Nunes Rodrigues UFES
  • Sebastião Vinícius Batista Brinate UFES
  • Lima Deleon Martins Centro Universitário São Camilo
  • Paulo Cezar Cavatte UFES
  • Marcelo Antonio Tomaz UFES

Palavras-chave:

Coffea arabica, gas exchange, dry matter, management, pruning

Resumo

Due to the possibility of enhancing the physiological responses by modulating the architecture of coffee trees, the objective of the study was to analyze the leaf gas exchanges and biomass allocation of Arabica coffee cultivated with different numbers of orthotropic stems. The experiment was carried out in a plantation located in Santa Teresa-ES, Brazil, cultivated with spacing of 2.5×1.0 m, using the cultivar Catuaí Vermelho IAC44. The gas exchange rates were monitored along stages of the phenological cycle (2014/2015), following a split-plot scheme, 3×3 (number of orthotropic stems per plant in three levels: 1, 2 and 3; and the phenological stages in three levels: flowering, fruit formation and maturation). The allocation of biomass in the plagiotropic branches was also analyzed during the phenological stage of fruit maturation. The management of the number of orthotropic stems affected the photosynthetic responses and biomass allocation of coffee trees. Under the studied conditions, cultivating the plants with two orthotropic stems created conditions which promoted the photosynthetic responses. Keeping more stems promotes the availability of leaves per amount of produced fruits in the plagiotropic branches, allowing the plant to sustain the production with
less metabolic wearing.

Referências

Almeida WL (2015) Respostas morfofisiológicas e de produtividade de cultivares de Coffea arabica L. em função da variação do espaçamento na linha de plantio. Dissertação de Mestrado. Universidade Federal de Viçosa, Rio Paranaíba. 44p.

Alves JD (2008) Morfologia do cafeeiro. In: Carvalho CHS (Ed.) Cultivares de café: origem, características e recomendações. Brasília, Embrapa Café. p.35-57.

Amaral JAT, DaMatta FM & Rena AB (2001) Effects of fruiting on the growth of Arabica coffee trees as related to carbohydrate and nitrogen status and nitrate reductase activity. Brazilian Journal of Plant Physiology, 13:66-74.

Baliza DP, Cunha RL, Guimarães RJ, Barbosa JPRAD, Avila FW & Passos AMA (2012) Physiological characteristics and development of coffee plants under different shading levels. Revista Brasileira de Ciências Agrárias, 7:37-43.

Bote ADE & Struik PC (2011) Effects of shade on growth, production and quality of coffee (Coffea arabica) in Ethiopia. Journal of Horticulture and Forestry, 3:336-341.

Camargo AP & Camargo MBP (2001) Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil. Bragantia, 60:65-68.

Cannell MG (1985) Physiology of the coffee crop. In: Clifford MN & Willson KC (Ed.) Coffee: Botany, Biochemistry and Production of Beans and Beverage. London, Crom Helm. p.108-134.

Carvalho CHM, Colombo A, Scalco MS & Morais AR (2006) Evolução do crescimento do cafeeiro (Coffea arabica L.) irrigado e não irrigado em duas densidades de plantio. Ciência e Agrotecnologia, 30:243-250.

Chaves ARM, Martins SC, Batista KD, Celin EF & DaMatta FM (2012) Varying leaf-to-fruit ratios affect branch growth and dieback, with little to no effect on photosynthesis, carbohydrate or mineral pools, in different canopy positions of field-grown coffee trees. Environmental and Experimental Botany, 77:207- 218.

Colodetti TV, Tomaz MA, Rodrigues WN, Verdin Filho AC, Cavatte PC & Reis EF (2018) Arquitetura da copa do cafeeiro arábica conduzido com diferentes números de ramos ortotrópicos. Revista Ceres, 65:415-423.

DaMatta FM (2004) Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Research, 86:99-114.

DaMatta FM, Cunha RL, Antunes WC, Martins SCV, Araujo WL, Fernie AR & Moraes GABK (2008) In field grown coffee trees source-sink manipulation alters photosynthetic rates, independently of carbon metabolism, via alterations in stomatal function. New Phytologist, 178:348-357.

DaMatta FM, Ronchi CP, Maestri M & Barros RS (2007) Ecophysiology of coffee growth and production. Brazilian Journal of Plant Physiology, 19:485-510.

Feller U & Keist M (1986) Senescence and nitrogen metabolism in annual plants. In: Lambers H, Neeteson JJ & Stulen I (Ed.) Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. Dordrecht, Martinus Nijhoff. p.219-234.

Ferreira DF (2011) SISVAR: A Computer statistical Analysis System. Ciência e Agrotecnologia, 35:1039-1042.

Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T & Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science, 193-194:70-84.

Laviola BG, Martinez HEP, Salomão LCC, Cruz CD, Mendonça SM & Neto AP (2007) Alocação de fotoassimilados em folhas e frutos de cafeeiro cultivado em duas altitudes. Pesquisa Agropecuária Brasileira, 42:1521-1530.

Martins SCV, Galmés J, Cavatte PC, Pereira LF, Ventrella MC & DaMatta FM (2014) Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis. Plos One, 9:01-10.

Morais H, Medri ME, Marur CJ, Caramori PH, Ribeiro AMA & Gomes JC (2004) Modifications on leaf anatomy of Coffea arabica caused by shade of pigeonpea (Cajanus cajan). Brazilian Archives of Biology and Technology, 47:863-871.

Ottander C, Campbell D & Öquist G (1995) Seasonal changes in photosystem II organization and pigment composition in Pinus sylvestris. Planta, 197:176-183.

Partelli FL, Araújo AV, Vieira HD, Dias JRM, Menezes LFT & Ramalho JC (2014) Microclimate and development of ‘Conilon’ coffee intercropped with rubber trees. Pesquisa Agropecuária Brasileira, 49:872-881.

Pereira SP, Baliza DP, Santos MO, Alves JD & Guimarães RJ (2013) Influência do espaçamento de cultivo em duas épocas de poda nos teores caulinares de carboidratos em cafeeiros. Coffee Science, 8:460-468.

Pezzopane JEM, Castro FS, Pezzopane JRM & Cecílio RA (2012) Agrometeorologia: aplicações para o Espírito Santo. Alegre, CAUFES. 174p.

Pezzopane JRM, Marsetti MMS, Souza JM & Pezzopane JEM (2010) Condições microclimáticas em cultivo de café conilon a pleno sol e arborizado com nogueira macadâmia. Ciência Rural, 40:01-07.

Prezotti LC, Gomes JA, Dadalto GG & Oliveira JA (2007) Manual de recomendação de calagem e adubação para o Estado do Espírito Santo: 5a aproximação. Vitória, SEEA/INCAPER/CEDAGRO. 305p.

Reis PR & Cunha RL (2010) Café arábica: do plantio à colheita. Lavras, Epamig. 896p.

Rodrigues WN, Tomaz MA, Ferrão MAG, Martins LD, Colodetti TV, Brinate SVB, Amaral JFT, Sobreira FM & Apostólico MA (2016) Biometry and diversity of Arabica coffee genotypes cultivated in a high density plant system. Genetics and Molecular Research, 15:01-12.

Sartori IA, Koller OC, Theisen S, Souza PVD, Bender RJ & Marodin GAB (2007) Efeito da poda, raleio de frutos e uso de fitorreguladores na produção de tangerineiras (Citrus deliciosa Tenore) cv. Montenegrina. Revista Brasileira de Fruticultura, 29:05-10.

Silva L, Marchiori PER, Maciel CP, Machado EC & Ribeiro RV (2010) Fotossíntese, relações hídricas e crescimento de cafeeiros jovens em relação à disponibilidade de fósforo. Pesquisa Agropecuária Brasileira, 45:965-972.

Verdin Filho AC, Volpi PS, Ferrão MAG, Ferrão RG, Mauri AL, Fonseca AFA, Tristão FA & Andrade Júnior S (2016) New management technology for Arabica coffee: the cyclic pruning program for arabica coffee. Coffee Science, 11:475-483.

Zhang S, Li Q, Ma K & Chen L (2001) Temperature-dependent gas exchange and stomatal/non-stomatal limitation to CO2 assimilation of Quercus liaotungensis under midday high irradiance. Photosynthetica, 39:383-388.

Downloads

Publicado

2025-05-15

Como Citar

Colodetti, T. V., Nunes Rodrigues, W., Batista Brinate, S. V., Deleon Martins, L., Cavatte, P. C., & Tomaz, M. A. (2025). The management of orthotropic stems modulates the photosynthetic performance and biomass allocation of productive plants of Arabica coffee. Revista Ceres, 67(6), 454–463. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/7832

Edição

Seção

CROP PRODUCTION

Artigos mais lidos pelo mesmo(s) autor(es)

1 2 > >>