Variability of photosynthetic performance among improved genotypes of Coffea canephora
Palavras-chave:
Conilon coffee, cultivar, diversity, gas exchange, phenological cycleResumo
This study evaluated the variability of photosynthetic performance of 27 improved genotypes of Conilon coffee, cultivated in the Southern of the Espírito Santo State. The photosynthetic performance was based on the measurement of gas exchange rates and chlorophyll in the period most favorable to the photosynthetic activity and in different stages of the reproductive cycle: flowering, fruit initiation, grain formation and fruit maturation; being expressed as the average (weighted by the number of days) along the phenological stages of the third reproductive cycle of the plants. It was possible to verify the existence of sufficient variability to differentiate the photosynthetic performance among the 27 genotypes throughout the reproductive cycle, even starting from a group of already improved genotypes. Among the physiological parameters, the rate of carbon assimilation, stomatal conductance and the transpiration rate stood out as parameters for the study of variability, mainly due to their contributions to the clustering of genotypes. The genotype 108 is highlighted due to its high photosynthetic rate, associated with higher relative content of chlorophyll, as well as reasonable water use efficiency. The genotypes 205, 206 and 305 stood out in terms of water use and carbon assimilation.
Referências
International Coffee Organization. Dados Históricos. [Londres]: Ico; 2019 [cited 2025 Jan 22]. Available from: http://www.ico.org/pt/new_historical_p.asp?section=Estat%EDstica
Conab. Acompanhamento da safra Brasileira: café. Brasília: Companhia Nacional de Abastecimento; 2024.
Borém A, Miranda GV. Melhoramento de plantas. 4ª ed. Viçosa: Editora UFV; 2005. 525p.
Ferrão RG, Fonseca AF, Ferrão MA, DeMuner LH. Conilon Coffee. 3ª ed. Vitória: Incaper; 2019. 973p.
Rodrigues WN, Tomaz MA, Ferrão RG, Ferrão MA, Fonseca AF, Miranda FD. Estimativa de parâmetros genéticos de grupos de clones de café Conilon. Coffee Sci. 2012;7(2):177-86.
DaMatta FM, Chaves AR, Pinheiro HA, Ducatti C, Loureiro ME. Drought tolerance of field-grown clones of Coffea canephora. Plant Sci. 2003;164(1):111-7.
Martins LD, Tomaz MA, Amaral JF, Bragança SM, Martinez HE, Reis EF, et al. Nutritional efficiency in clones of conilon coffee for phosphorus. J Agric Sci. 2013;5(2):130-40.
Colodetti TV, Rodrigues WN, Martins LD, Tomaz MA. Differential tolerance between genotypes of conilon coffee (Coffea canephora) to low availability of nitrogen in the soil. Aust J Crop Sci. 2014;8(12):1648-57.
Fonseca AF, Sediyama T, Cruz CD, Sakaiyama NS, Ferrão MA, Ferrão RG, et al. Genetic divergence in conilon coffee. Pesqui Agropecu Bras. 2006;41(4):599-605.
Ronchi CP, DaMatta FM. Physiological aspects of conilon coffee. In: Ferrão RG, Fonseca AF, Ferrão MA, DeMuner LH, editores. Conilon Coffee. Vitória: Incaper; 2019. p. 111-43.
Martins SC, Galmés J, Cavatte PC, Pereira LF, Ventrella MC, DaMatta FM. Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis. PLoS One. 2014;9(4):e95571.
Morais LE, Cavatte PC, Detmann KC, Sanglard LM, Ronchi CP, DaMatta FM. Source strength increases with the increasing precociousness of fruit maturation in field-grown clones of conilon coffee (Coffea canephora) trees. Trees. 2012;26(5):1397-404.
Bunn C, Läderach P, Rivera OO, Kirschke D. A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Clim Change. 2015;129(1-2):89-101.
Embrapa. Centro nacional de pesquisa de solos. Manual de métodos de análise de solo. 2ª ed. Rio de Janeiro: Embrapa; 1997.
Bragança SM, Carvalho CH, Fonseca AF, Ferrão RG. Variedades clonais de café Conilon para o Estado do Espírito Santo. Pesqui Agropecu Bras. 2001;36(6):765-70.
Konrad ML, Silva JA, Furlani PR, Machado EC. Trocas gasosas e fluorescência da clorofila em seis cultivares de cafeeiro sob estresse de alumínio. Bragantia. 2005;64(3):339-47.
Silva L, Marchiori PE, Maciel CP, Machado EC, Ribeiro RV. Fotossíntese, relações hídricas e crescimento de cafeeiros jovens em relação à disponibilidade de fósforo. Pesqui Agropecu Bras. 2010;45(10):965-72.
Science & Information for a Climate-Smart Nation. 2017 State of the climate: Atmospheric carbon dioxide. [USA]: Climate.gov; 2018 [cited 2023 Feb 24]. Available from: https://www.climate.gov/news-features/featured-images/2017-state-climate-atmospheric-carbon-dioxide
Cruz CD, Carneiro PC. Modelos Biométricos Aplicados ao Melhoramento Genético. Viçosa: Editora UFV; 2003. 585p.
Singh D. The relative importance of characters affecting genetic divergence. Indian J Genet Plant Breed. 1981;41(2):237-45.
Cruz CD. GENES: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci Agron. 2013;35(3):271-6.
Silva EA, DaMatta FM, Ducatti C, Regazzi AJ, Barros RS. Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Res. 2004;89(2-3):349-57.
Pinheiro HA, DaMatta FM, Chaves AR, Loureiro ME, Ducatti C. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Ann Bot. 2005;96(1):101-8.
Ainsworth EA, Rogers A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 2007;30(3):258-70.
Kirschbaum MU. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol. 2011;155(1):117-24.
Batista KD, Araújo WL, Antunes WC, Cavatte PC, Moraes GA, Martins SC, et al. Photosynthetic limitations in coffee plants are chiefly governed by diffusive factors. Trees. 2012;26(3):459-68.
DaMatta FM, Godoy AG, Menezes-Silva PE, Martins SC, Sanglard LM, Morais LE, et al. Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations. J Exp Bot. 2016;67(2):341-52.
Streit NM, Canterle LP, Canto MW, Hecktheuer LH. As clorofilas. Cienc Rural. 2005;35(3):748-55.
Taiz L, Zeiger E, Moller IM, Murphy A. Fisiologia e desenvolvimento vegetal. 6ª ed. Porto Alegre: Artmed; 2017. 888p.
Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol. 1991;42:313-49.
Peloso AF, Tatagiba SD, Reis EF, Pezzopane J, Amaral JF. Limitações fotossintéticas em folhas de cafeeiro arábica promovidas pelo déficit hídrico. Coffee Sci. 2017;12(3):389-99.
Rodrigues WN, Colodetti TV, Brinate SV, Martins LD, Tomaz MA. Genetic variability for sprout growth among genotypes of Coffea canephora led by bending of orthotropic stems. Genet Mol Res. 2017;16(1):1-12.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.