Thermal, hydric, and physiological effects on watermelon due to wetted area variation
Palavras-chave:
Citrullus lanatus, PW, evapotranspiration, fruit mass, BRIXResumo
The objective of this research was to evaluate leaf temperature, and watermelon yield components under wetted area percentages (PW) in irrigation located in the Agreste region of Northeastern Brazil. Two experiments were carried out in 2018 and 2019. The adopted statistical design was randomized blocks, with six replications and four treatments, in 2018: P1 = 13%, P2 = 14%, P3 = 19%, and P4 = 22%, in 2019: P5 = 12%, P6 = 15%, P7 = 16%, and P8 = 21% of PW. The meteorological variables analyzed were: air temperature (Ta) and rain. The experimental evaluations consisted of measuring the temperature of the plant’s vegetative canopy, tensiometry, mass, and BRIX. Air temperature was not a limiting factor for watermelon growth and development. The average was 195.88 mm, and the average leaf temperature of watermelon is 29.5 °C, a value lower than Ta. There was no statistically significant difference for fruit mass and BRIX, where the overall mean was 10.82 and 10.46 kg, respectively. Therefore, it is feasible to irrigate watermelon with wetted area percentages ranging from 12 to 22%, in localized irrigation systems, without generating physiological damage and reducing agricultural productivity and fruit quality.
Referências
Abdulhadi JS & Alwan HH (2020) Evaluation the existing drip irrigation network of Fadak Farm. Kerbala Journal for Engineering Science, 0:01-13.
Aguiar Neto P, Souza RAG, Maracajá PB, Medeiros AC, Pimenta TA & Lima TS (2016) Crescimento e absorção de macronutrientes na cultura da melancia no estado de Pernambuco. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 11:17-25.
Barros AC, da Silva FF, Araujo PHV, Medeiros PRF & Lelis Neto JA (2019) Estimativa diária da evapotranspiração de referência por Hargreaves-Samani e ajuste de parâmetros para Alagoas. Irriga, 24:527-537.
Barros AHC, Araújo Filho JC, Silva AB & Santiago GACF (2012) Climatologia do Estado de Alagoas. Recife, Embrapa Solos. 32p.
Bernardo S, Soares AA & Mantovani EC (2006) Manual de Irrigação. 8ª ed. Viçosa, Editora UFV. 625p.
Çamoğlu G, Așık Ș, Genç L & Demirel K (2010) The effects of water stress on evapotranspiration, water use efficiency, yield and quality parameters in watermelon irrigated by drip irrigation. Ege Üniversitesi Ziraat Fakültesi Dergisi, 47:135-144.
Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2018) Sistema Brasileiro 395 de Classificação do Solo. 5ª ed. Brasília, Embrapa. 356p.
Erdem Y & Yuksel AN (2003) Yield response of watermelon to irrigation shortage. Scientia Horticulturae, 98:365-383.
FAO – Food and Agriculture Organization (2023) Crops and livestock prooducts. Available at: https://www.fao.org/faostat/en/#data/QCL. Accessed on: May 25th, 2023.
Ferreira PV (2018) Estatística experimental aplicada às Ciências Agrárias. Viçosa, UFV. 588p.
Ferreira VM, Klar AE, Andrade Júnior AS, Bastos EA & Oliveira SEM (2015) Evapotranspiração e coeficiente de cultura da melancia na microrregião de Teresina, PI, Brasil. Comunicata Scientiae, 6:488-494.
Frizzone JA, Freitas PSL, Rezende R & Faria MA (2012) Microirrigação: gotejamento e microaspersão. Maringá, Eduem. 356p.
Hama-Aziz ZQ, Mustafa RA & Neima HA (2023) Water productivity of mulched and drip irrigated watermelon in Kurdistan Region of Iraq. Research Square [Preprint]. Available at: https://doi.org/10.21203/rs.3.rs-2887425/v1. Accessed on: May 25th, 2023.
Hamad AO, Kai KH, Kijazi A, Khamis SA, Abdalla AH, Ame HK & Ali FA (2022) The Influence of Climate Variability on the Watermelon Production in Zanzibar. Atmospheric and Climate Sciences, 13:44-61.
Hargreaves GH & Samani ZA (1985) Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1:96-99.
Hong T, Cai Z, Zhao R, He Z, Ding M & Zhang Z (2021) Effects of water and nitrogen coupling on the yield, quality, and water and nitrogen utilization of watermelon under CO2 enrichment. Scientia Horticulturae, 286:110213.
IBGE - Instituto Brasileiro de Geografia e Estatística (2021) Produção Agrícola Municipal. Available at: https://sidra.ibge.gov.br/tabela/5457#resultado. Accessed on: May 25th, 2023.
Keller J & Karmeli D (1975) Trickle irrigation design. Glendora, Rain Bird. 133p.
Li H, Yang X, Chen H, Cui Q, Yuan G, Han X, Wei C, Zhang Y, Ma J & Zhang X (2018) Water requirement characteristics and the optimal irrigation schedule for the growth, yield, and fruit quality of watermelon under plastic film mulching. Scientia Horticulturae, 241:74-82.
Mantovani EC, Bernardo S & Palaretti LF (2007) Irrigação: Princípios e Métodos. Viçosa, UFV. 322p.
Nair S, Johnson J & Wang C (2013) Efficiency of irrigation water use: A review from the perspectives of multiple disciplines. Agronomy Journal, 105:351-363.
Nisha SK, Sreelathakumary I & Vijeth S (2020) Effect of fertigation and drip irrigation on yield and quality of watermelon [Citrullus Lanatus (THUNB.) Matsum. & Nakai]. Journal of Applied Horticulture, 22:67-70.
Ribeiro AC, Guimarães PTG & Alvarez VVH (1999) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais: 5ª aproximação. Viçosa, Comissão de fertilidade do solo do estado de Minas Gerais. 359p.
SAS Institute Inc. (2002) Statistical Analysis System user’s guide. Version 9.0. Cary, Statistical Analysis System Institute. 513p.
Sharma SP, Leskovar DI, Volder A, Crosby KM & Ibrahim AMH (2018) Root distribution patterns of reticulatus and inodorus melon (Cucumis Melo l.) Under subsurface deficit irrigation. Irrigation Science, 36:301-317.
Vellame LM, Fraga Júnior EF & Coelho RD (2015) Effect of partial soil wetting on transpiration, vegetative growth and root system of young orange trees. Scientia Agricola, 72:377-384.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.