Cry 1F and Cry 2Ab2 proteins survey in maize landraces and teosinte cultivated in Alto Jequitinhonha region

Autores

  • Laize Cristina Rossini UFVJM
  • Ronnie Von dos Santos Veloso UFVJM
  • Josimar Rodrigues Oliveira UFVJM
  • Marcus Alvarenga Soares UFVJM
  • Márcia Regina da Costa UFVJM
  • Ricardo Siqueira da Silva UFVJM

Palavras-chave:

transgenic, non-transgenic, gene flow, Zea mays, smallholder

Resumo

Maize landraces diversity is important for many smallholder and indigenous populations. Gene flow constitutes a threat to the genetic conservation of several locally adapted maize landraces and, risk management depends on monitoring transgenic occurrence in non-GM maize. This study evaluated the occurrence of exogenous proteins from GM-maize in maize landraces and teosinte cultivated in the Alto Jequitinhonha region, State of Minas Gerais. Gene flow from GM maize to non-transgenic varieties was evaluated in eight maize groups and one teosinte variety. A transgenic maize variety was used as a positive control. Proteins Cry1F and Cry2Ab2 were monitored using the Protein Detection Assay kit (Envirologix QuickStix® kit protocols for detecting Cry1F and Cry2Ab2 proteins). Transgenic proteins were not detected in the leaves of landraces and teosinte cultivated in the Alto Jequitinhonha region.

Referências

Agapito-Tenfen SZ & Wickson F (2018) Challenges for transgene detection in landraces and wild relatives: learning from 15 years of debate over GM maize in Mexico. Biodiversity and Conservation, 27:539-566.

Arteaga MC, Moreno-Letelier A, Mastretta-Yanes A, Vázquez-Lobo A, Breña-Ochoa A, Moreno-Estrada A, Eguiarte LE & Piñero D (2016) Genomic variation in recently collected maize landraces from Mexico. Genomics Data, 7:38-45.

Baltazar BM, Sánchez-Gonzalez JJ, Cruz-Larios L & Schoper JB (2005) Pollination between maize and teosinte: an important determinant of gene flow in Mexico. Theoretical and Applied Genetics, 110:519-526.

Baltazar MB, Espinoza LC, Banda AE, Martínez JMF, Tiznado JAG, García JG, Gutiérrez MA, Rodríguez JLG, Díaz OH, Horak MJ, Martínez JIM, Schapaugh AW, Stojšin D, Montes HRU & García FZ (2015) Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize. PLoS ONE, 10:e0131549.

Bauer-Panskus A, Miyazaki J, Kawall K & Then C (2020) Risk assessment of genetically engineered plants that can persist and propagate in the environment. Environmental Sciences Europe, 32:32.

Bellon MR & Berthaud J (2006) Traditional Mexican Agricultural Systems and the Potential Impacts of Transgenic Varieties on Maize Diversity. Agriculture and Human Values, 23:03-14.

Bøhn T, Aheto D, Mwangala F, Fischer K, Bones IL, Simoloka C, Mbeule I, Schmidt G & Breckling B (2016) Pollen-mediated gene flow and seed exchange in small-scale Zambian maize farming, implications for biosafety assessment. Scientific Reports, 6:34483.

Brasil (2002) Registro Nacional de Cultivares – RNC: UFVM 200. Available at: <http://sistemas.agricultura.gov.br/snpc/cultivarweb/detalhe_cultivar.php?codsr=12367>. Accessed on: September 20th, 2021.

Chaparro-Giraldo A, Blanco M, Jennifer T & López-Pazos SA (2015) Evidence of gene flow between transgenic and non-transgenic maize in Colombia. Agronomía Colombiana, 33:297-304.

Chavez NB, Flores JJ, Martin J, Ellstrand NC, Guadagnuolo R, Heredia S & Welles SR (2012) Maize x Teosinte Hybrid Cobs Do Not Prevent Crop Gene Introgression. Economic Botany, 66:132-137.

Cruz JC (2010) Cultivo do Milho. 6a ed. Sete Lagoas, Embrapa Milho e Sorgo. 10p.

Guzzon F, Arandia RLW, Caviedes CGM, Céspedes PM, Chavez CA, Muriel FJ, Medina HAE, Jara CTW, Molnar TL, Narro LLA, Narro LTP, Mejía KSL, Ospina RJG, Vázquez G, Preciado-Ortiz RE, Zambrano JL, Palacios RN & Pixley KV (2021) Conservation and Use of Latin American Maize Diversity: Pillar of Nutrition Security and Cultural Heritage of Humanity. Agronomy, 11:172.

Hernández-Terán A, Wegier A, Benítez M, Lira R & Escalante AE (2017) Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin. Frontiers in Plant Science, 5:2030.

IBGE – Instituto Brasileiro de Geografia e Estatística (2017) Instituto Brasileiro de Geografia e Estatística. Censo Agropecuário. Available at: <https://www.ibge.gov.br/estatisticas/downloads-estatisticas.html>. Accessed on: October 22nd, 2021.

Le Corre V, Siol M, Vigouroux Y, Tenaillon MI & Délye C (2020) Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe. Proceedings of the National Academy of Sciences of America, 117:25618-25627.

Marques LH, Santos AC, Castro BA, Moscardini VF, Rosseto J, Silva O & Babcock JM (2019) Assessing the Efficacy of Bacillus thuringiensis(Bt) Pyramided Proteins Cry1F, Cry1A.105, Cry2Ab2, and Vip3Aa20 Expressed in Bt Maize Against Lepidopteran Pests in Brazil. Journal of economic entomology, 112:803-811.

Nascimento VE, Pinho EVRV, Pinho RGV, Souza JC & Júnior ADN (2012) Fluxo gênico em milho geneticamente modificado com resistência a insetos. Pesquisa Agropecuária Brasileira, 47:784-790.

Parentoni SN, Miranda RA & Garcia JC (2013) Implications on the introduction of transgenics in Brazilian maize breeding programs. Crop Breeding and Applied Biotechnology, 13:09-22.

Rojas-Barrera IC, Wegier A, González JJS, Owens GL, Rieseberg LH & Piñero D (2019) Contemporary evolution of maize landraces and their wild relatives influenced by gene flow with modern maize varieties. Proceedings of the National Academy of Sciences of America, 116:21302-21311.

Todesco M, Pascual MA, Owens GL, Ostevik KL, Moyers BT, Hübner S, Heredia SM, Hahn MA, Caseys C, Bock DG & Rieseberg LH (2016) Hybridization and extinction. Evolutionary applications, 9:892-908.

Van Heerwaarden J, Ortega DVD, Alvarez-Buylla ER & Bellon MR (2012) New genes in traditional seed systems: diffusion, detectability and persistence of transgenes in a maize metapopulation. PLoS One, 7:e46123.

Zhang L, Huo S, Cao Y, Xie X, Tan Y, Zhang Y, Zhao H, He P, Guo J, Xia Q, Zhou X, Long H & Guo A (2020) A new isolation device for shortening gene flow distance in small-scale transgenic maize breeding. Scientific Reports, 10:15733.

Downloads

Publicado

2025-06-03

Como Citar

Rossini, L. C., Von dos Santos Veloso, R., Rodrigues Oliveira, J., Alvarenga Soares, M., da Costa, M. R., & Siqueira da Silva, R. (2025). Cry 1F and Cry 2Ab2 proteins survey in maize landraces and teosinte cultivated in Alto Jequitinhonha region. Revista Ceres, 71, e71008. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/7967

Edição

Seção

CROP PRODUCTION

Artigos mais lidos pelo mesmo(s) autor(es)