Crop-Livestock Integration: Attack of Spodoptera frugiperda (Lepidoptera: Noctuidae) on transgenic maize and Bachiaria brizantha (Poaceae)

Autores

  • Paulo Henrique Baêta Nogueira de Carvalho UFVJM
  • Wilson Faustino Júnior UFVJM
  • Zaira Vieira Caldeira UFVJM
  • Ricardo Siqueira da Silva UFVJM
  • Ronnie Von dos Santos Veloso UFVJM
  • Marcus Alvarenga Soares UFVJM

Palavras-chave:

Bacillus thuringiensis;, consortium;, foragers;, grazing;, pest insect.

Resumo

The Crop-Livestock Integration system has sustainable potential. But pests such as the defoliating caterpillar Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) can reduce the productivity of this system. The objective was to report transgenic maize and Brachiaria brizantha (A. Rich.) (Poaceae) plants attacked by S. frugiperda in the Crop-Live-stock Integration system. Feroz VIP3® transgenic maize (SYN8A98 TLTG Viptera) and B. brizantha MG-5 Xaraés plants attacked by S. frugiperda were evaluated 20 days after planting, weekly and for 28 days. The transgenic maize plants were less attacked by S. frugiperda than those of B. brizantha. The negative impact of this pest on B. brizantha suggests the planning and adopting strategies for its control, such as the use of traps, resistant cultivars, and biological or chemical products, minimizing losses in animal production and, consequently, in human food.

Referências

Assis PCR, Stone LF, Oliveira JDM, Wruck FJ, Madari BE & Heinemann AB (2019) Physical, chemical and biological soil attributes in integrated crop-livestock-forestry systems. Revista Agrarian, 12:57-70.

Auad AM, Souza Sobrinho F, Mendes SM, Toledo AMO, Lucindo TS & Benites FRG (2016) Seleção de clones de braquiária para resistência à lagarta-do-cartucho. Pesquisa Agropecuária Brasileira, 51:579-585.

Baldotto MA, Souza ADC, Viana MCM, Almeida DDD & Baldotto LEB (2017) Bioatividade das substâncias húmicas extraídas de solos manejados com integração, lavoura, pecuária e floresta. Revista Ceres, 64:540-547.

Bansal S, Chakraborty P & Kumar S (2022) Crop-livestock integration enhanced soil aggregate-associated carbon and nitrogen, and phospholipid fatty acid. Scientific Reports, 12:2781.

Carvalho JCN, Silva FWS, Leite GLD, Azevedo AM, Teixeira GL, Soares MA, Zanuncio JC & Legaspi JC (2020) Does fertilization with dehydrated sewage sludge affect Terminalia argentea (Combretaceae) and associated arthropods community in a degraded area? Scientific Reports, 10:11811.

Castro BMC, Martinez LC, Barbosa SG, Serrão JE, Wilcken, CF, Soares MA, Silva AA, Carvalho AG & Zanuncio JC (2019) Toxicity and cytopathology mediated by Bacillus thuringiensis in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Scientific Reports, 9:6667.

Cheruiyot D, Morales XC, Chidawanyika F, Bruce TJ & Khan ZR (2021) Potential roles of selected forage grasses in management of fall armyworm (Spodoptera frugiperda) through companion cropping. Entomologia Experimentalis et Applicata, 169:966-974.

Climate-Data (2022) Dados climáticos para cidades mundiais. Available at: <http://pt.climate-data.org/>. Accessed on: May 15th, 2022.

CONAB - Companhia Nacional de Abastecimento (2021) Acompanhamento da Safra Brasileira. Grãos - Safra 2021/22 - 6° Levantamento.

Available at: <https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos>. Accessed on: April 04th, 2022.

Dos Santos JB, Silva AN, De Oliveira Cruz J, Dos Santos RB & Da Silva RF (2020) Características agronômicas e avaliação econômica do milho sob diferentes doses de nitrogênio na forma de ureia comum e peletizada. Revista Agri-Environmental Sciences, 6:e020015.

Figueiredo CS, Lemes ARN, Sebastião I & Desidério JA (2019) Synergism of the Bacillus thuringiensis Cry1, Cry2, and Vip3 proteins in Spodoptera frugiperda control. Applied Biochemistry and Biotechnology, 188:798-809.

Geremia EV, Crestani S, Mascheroni JDC, Carnevalli RA, Mourão GB & Da Silva SC (2018) Sward structure and herbage intake of Brachiaria brizantha cv. Piatã in a crop-livestock-forestry integration area. Livestock Science, 212:83-92.

Gléria AA, Santos KJG, Santos APP, Silva RM & Paim TP (2017) Produção de bovinos de corte em sistemas de integração lavoura pecuária. Archivos de Zootecnia, 66:141-150.

Harrison RD, Thierfelder C, Baudron F, Chinwada P, Midega C, Schaffner U & Van Den Berg J (2019) Agro-ecological options for fall armyworm (Spodoptera frugiperda JE Smith) management: Providing low-cost, smallholder friendly solutions to an invasive pest. Journal of Environmental Management, 243:318-330.

Kunrath TR, Carvalho PCF, Cadenazzi M, Bredemeier C & Anghinoni I (2015) Grazing management in an integrated croplivestock system: soybean development and grain yield. Revista Ciência Agronômica, 46: 645-653.

Leite GLD, Bispo EPR, Alvarenga AC, Paulo PD, Soares MA & Lemes PG (2021) Toxicological and behavioural impacts of atrazine on Trichogrammatidae (Hymenoptera) in choice tests. Revista Colombiana de Entomologia, 47:e8445.

Lima ILP, Alexiades MN & Scariot A (2022) Livestock management within a traditional agrosilvopastoral system in northern Minas Gerais, Brazil: A model for reconciling livelihoods and conservation at a time of environmental change. Human Ecology, 50:183-193.

Monnerat R, Martins E, Macedo C, Queiroz P, Praça L, Soares CM, Moreira H, Grisi I, Silva J, Soberon M & Bravo A (2015) Evidence of field-evolved resistance of Spodoptera frugiperda to Bt corn expressing Cry1F in Brazil that is still sensitive to modified Bt toxins. PLoS One, 10:e0119544.

Omoto C, Bernardi O, Salmeron E, Sorgatto RJ, Dourado PM, Crivellari A, Carvalho RA, Willse A, Martinelli S & Head GP (2016) Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Management Science, 72:1727-1736.

Roese AD, Ribeiro Junior PJ, Da Silva VP & De Mio LLM (2018) Agrosilvopastoral system enhances suppressiveness to soybean damping-off caused by Rhizoctonia solani and alters Fusarium and Trichoderma population density. Acta Scientiarum. Agronomy, 40:e35075.

RStudio Team (2022) RStudio: Integrated Development for R. RStudio, PBC, Boston, Massachusetts. Available at: <https://www.rstudio.com/>. Accessed on: April 20th, 2022.

Scoton AMN, Degrande PE, Da Silva MB, Jacques FL, Lourenção ALF & De Souza EP (2020) Spodoptera frugiperda (JE Smith, 1797) (Lepidoptera: Noctuidae) control and productive performance of BT maize genotypes. Brazilian Journal of Agriculture, 95:68-82.

Tabashnik BE & Carrière Y (2020) Evaluating cross-resistance between Vip and Cry toxins of Bacillus thuringiensis. Journal of Economic Entomology, 113:553-561.

Tabashnik BE & Carrière Y (2017) Surge in insect resistance to transgenic crops and prospects for sustainability. Nature Biotechnology, 35:926-935.

Tsufac AR, Awazi NP & Yerima BPK (2021) Characterization of agroforestry systems and their effectiveness in soil fertility enhancement in the south-west region of Cameroon. Current Research in Environmental Sustainability, 3:e100024.

Udayakumar A, Shivalingaswamy TM & Bakthavatsalam N (2021) Legume-based intercropping for the management of fall armyworm, Spodoptera frugiperda L. in maize. Journal of Plant Diseases and Protection, 128:775-779.

Zhao Y, Yun Y & Peng Y (2020) Bacillus thuringiensis protein Vip3Aa does not harm the predator Propylea japonica: A toxicological, histopathological, biochemical and molecular analysis. Ecotoxicology and Environmental Safety, 192:e110292.

Downloads

Publicado

2025-06-04

Como Citar

Baêta Nogueira de Carvalho, P. H., Júnior, W. F., Vieira Caldeira, Z., Siqueira da Silva, R., Von dos Santos Veloso, R., & Alvarenga Soares, M. (2025). Crop-Livestock Integration: Attack of Spodoptera frugiperda (Lepidoptera: Noctuidae) on transgenic maize and Bachiaria brizantha (Poaceae). Revista Ceres, 70(4), 91–96. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/8137

Edição

Seção

PLANT HEALTH

Artigos mais lidos pelo mesmo(s) autor(es)