Beneficial rhizobacteria and cover crops on soybean development
Palavras-chave:
Sustainable agriculture, Glycine max, No-tillage system, beneficial microorganisms, multifunctional rhizobacteriaResumo
Soybean cultivation holds national and international significance, necessitating sustainable production practices. This study evaluated the impact of plant growth-promoting rhizobacteria (PGPR) and cover crops on soybean yield components and grain yield. The experiment followed a randomized block design in a 5 × 2 factorial scheme with four replications. Treatments included the application of a PGPR combination (Bacillus sp. + Serratia marcescens) and five cover crops grown in the off-season: rice, corn, millet, Urochloa ruziziensis, and a cover crops mix. Over five agricultural seasons (2019/20–2023/24), we assessed the number of pods per plant, grains per pod, 100-grain mass, and grain yield. Cover crops did not influence yield components or grain yield. However, applying the PGPR mixture (Bacillus sp. BRM 63573 + Serratia marcescens BRM 32114) significantly improved 100-grain mass and grain yield. Among climatic factors, solar radiation was the primary determinant of grain yield variation. These findings highlight the potential of PGPR to enhance soybean production sustainably, while cover crops may require further investigation to optimize their role in this system.
Referências
United States Department of Agriculture – USDA. Country summary – Brazil: soybean [Internet]. 2024 [cited 2024 Aug 1]. Available from: https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=BR&crop=Soybean
Companhia Nacional de Abastecimento – CONAB. Acompanhamento da safra brasileira: grãos, 10º levantamento [Internet]. 2023 [cited 2024 Jul 31]. Available from: https://www.conab.gov.br/info-agro/safras/graos
Souza AG, Smiderle OJ. Cultura da soja: radiação solar, acúmulo de matéria seca e suas interações para alta produtividade. In: Melo JOF, Silva APCM, Garcia EM, Taroco HA, Reina LDCB, editors. Ciências Agrárias: Tecnologia, sustentabilidade e inovação. 6th ed. 2024. p. 84–107.
Fancelli AL, Dourado Neto D. Produção de milho. Guaíba: Agropecuária; 2000.
Assis FN, Mendez MEG. Relação entre radiação fotossinteticamente ativa e radiação global. Pesq Agropec Bras. 1989;24:797–800.
Shibles RM, Weber CR. Interception of solar radiation and dry matter production by various soybean planting patterns. Crop Sci. 1966;6:55–9.
Verma M, Mishra J, Arora NK. Plant growth-promoting rhizobacteria: diversity and applications. In: Sobti R, Arora N, Kothari R, editors. Environmental biotechnology: for sustainable future. Singapore: Springer; 2019. p. 129–73.
Romagnoli EM, Andreote FD. Rizosfera. In: Cardoso EJBN, Andreote FD, editors. Microbiologia do solo. Piracicaba: ESALQ; 2016. p. 47–55.
Mondani F, Khani K, Honarmand SJ, Saeidi M. Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) under water deficit stress condition. Agric Water Manag. 2018;213:701–13.
De Paula GF, Demétrio GB, Matsumoto LS. Biotechnological potential of soybean plant growth-promoting rhizobacteria. Rev Caatinga. 2021;34:328–38.
Chagas Júnior AF, Borba E, Martins ALL, Souza MC, Gomes FL, Oliveira RS, et al. Bacillus sp. como promotor de crescimento em soja. Rev Cienc Agrar. 2021;44:170–9.
Rezende CC, Nascente AS, Silva MA, Frasca LLM, Pires RAC, De Filippi MCC, et al. Physiological and agronomic performance of common bean treated with multifunctional microorganisms. Rev Bras Cienc Agrar. 2021;16:838.
Amado TJC, Bayer C, Eltz FLF, Brum ACR. Potencial de culturas de cobertura em acumular carbono e nitrogênio no solo no plantio direto e a melhoria da qualidade ambiental. Rev Bras Cienc Solo. 2001;25:189–97.
Lamas FM. Plantas de cobertura: o que é isto? [Internet]. 2017 [cited 2024 May 5]. Available from: https://www.embrapa.br/busca-de-noticias/-/noticia/28512796/artigo—plantas-de-cobertura-o-que-e-isto
Michelon CJ, Junges E, Casali CA, Pellegrini JBR, Neto LR, Oliveira ZB, et al. Atributos do solo e produtividade do milho cultivado em sucessão a plantas de cobertura de inverno. Rev Cienc Agroveterinarias. 2019;18:230–9.
Santos FLS, Nascente AS, Lacerda MC, Calil FN, Dias JMM. Consórcio do arroz de terras altas A501CL com Urochloa ruziziensis. In: XI Congresso Brasileiro de Arroz Irrigado; 2019; Balneário Camboriú. p. 1–4.
Barbieri JD, Dallacort R, Daniel DF, Dalchiavon FC, Freitas PSL. Cobertura do solo, evapotranspiração e produtividade do milho safrinha. Agron Crop J. 2020;29:76–91.
Reis GP, Borsoi A. Atributos físicos do solo, incidência de plantas daninhas e massa seca de plantas de cobertura na entressafra da soja em Latossolo Vermelho. Rev Cultivando Saber. 2020;1:69–76.
Lange A, Buchelt AC, Tolfo DA, Dassi D, Silva AFS, Cavalli E. Sistema soja e milho safrinha consorciado com Urochloa ruziziensis: dois anos de cultivo. Rev Cienc Agron. 2021;30:149–65.
Marasca I, De Jesus ES, Paiva Filho SV, Tavares RLM. Eficiência das plantas de cobertura na densidade de plantas daninhas e como descompactadoras de solo. Agraria. 2021;14:295–303.
Frasca LLM, Nascente AS, Rezende CC, Silva MA, Lanna AC, Ferreira EPB, et al. Consortium of multifunctional microorganisms in soybean culture. Colloquium Agrariae. 2022;18:61–7.
Araujo FC, Nascente AS, De Filippi MCC, Silva MA, Sousa VS, Lanna AC. Cover crops and multifunctional microorganisms can affect development of upland rice. Aust J Crop Sci. 2021;15:137–44.
Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. Köppen’s climate classification map for Brazil. Meteorol Z. 2013;22:711–28.
Silva MA, Cruz DRC, Frasca LLM, De Filippi MCC, Ferreira AL, Nascente AS. Inoculation and co-inoculation with multifunctional rhizobacteria for the initial development of soybean. Pesq Agropec Trop. 2022;52:73558.
Ferreira DF. Sisvar: a computer analysis system to fixed effects split plot type designs. Rev Bras Biom. 2019;37:529–35.
R Core Team. R: A language and environment for statistical computing [Internet]. Version 4.4.1. Vienna: R Foundation for Statistical Computing; 2024 [cited 2024 Apr 10]. Available from: https://www.R-project.org/
Nascente AS, Crusciol CAC. Cover crops and herbicide timing management on soybean yield under no-tillage system. Pesq Agropec Bras. 2012;47:187–92.
Pott CA, Conrado PM, Rampim L, Umburanas RC, Conrado AMC, Outeiro VH, et al. Mixture of winter cover crops improves soil physical properties under no-tillage system in a subtropical environment. Soil Tillage Res. 2023;234:105854.
Silva MA, Nascente AS, De Filippi MCC, Frasca LLM, Rezende CC. Sustainable agricultural practices to improve soil quality and productivity of soybean and upland rice. Aust J Crop Sci. 2023;1:61–8.
Nascente AS, Stone LF, Crusciol CAC. Soil chemical properties affected by cover crops under no-tillage system. Rev Ceres Online. 2015;62:401–9.
Tavanti TR, Tavanti RFR, Galindo FS, Simões I, Dameto LS, Sá ME. Yield and quality of soybean seeds inoculated with Bacillus subtilis strains. Rev Bras Eng Agríc Ambient. 2020;24:65–71.
Park YG, Mun B, Kang S, Hussain A, Shahzad R, Seo C, et al. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS One. 2017;12(3):e0173203.
Braga Júnior GM, Chagas Júnior AF, Chagas LFB, Martins ALL, Oliveira RS, Lima CA, et al. Bacillus subtilis as a growth promoter inoculant on soybean plants in field. Braz J Dev. 2021;7:107220–37.
Mondani F, Khani K, Honarmand SJ, Saeidi M. Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) under water deficit stress condition. Agric Water Manag. 2018;213:701–13.
Silva MA, Nascente AS, De Filippi MCC, Lanna AC, Silva GB, Silva JFAE. Single or mixed growth promoting microorganisms as affecting biomass production, gas exchange and nutrient content of soybean plants. Rev Caatinga. 2020;33:619–32.
Ferreira PV. Estatística experimental aplicada às ciências agrárias. 1st ed. Viçosa: UFV; 2018.
Melges E, Lopes NF, Oliva MA. Crescimento, produção de matéria seca e produtividade da soja submetida a quatro níveis de radiação solar. Pesq Agropec Bras. 1989;24:1073–80.
Hammad HM, Abbas F, Ahmad A, Fahad S, Laghari KQ, Alharby H, et al. The effect of nutrients shortage on plant’s efficiency to capture solar radiations under semi-arid environments. Environ Sci Pollut Res. 2016;23:20497–505.
Santos JB, Procópio SO, Silva AA, Costa LC. Captação e aproveitamento da radiação solar pelas culturas da soja e do feijão e por plantas daninhas. Bragantia. 2003;62:147–53.
Fattori Junior IM, Da Silva EHFM, Rosa JM, Marin FR. Assessing cloudiness effect on soybean in the Southeast Brazil. Agrometeoros. 2019;27:73–80.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.