Contrasting roles of gibberellin and cytokinin in the in vitro development and acclimatization of pitaya (Selenicereus undatus (Haw.) D. R. Hunt)
Palavras-chave:
dragon fruits, hypocotyl anatomy, phytohormones, plant development, micropropagationResumo
The use of plant growth regulators is a widely adopted strategy to optimize germination and propagation under in vitro conditions; however, their application can also cause morpho-physiological changes in plants that need to be investigated. The study aimed to evaluate the effect of gibberellic acid (GA) and 6-benzyladenine (BA) supplementation on the in vitro germination, structure, and shoot proliferation of S. undatus, as well as to test different substrates during the acclimatization of the obtained plantlets. Seeds were inoculated in MS medium without plant growth regulators (MS0) and in MS medium supplemented with GA (1.0 and 3.0 mg L-1) and BA (1.0 and 2.0 mg L-1). Seeds were also germinated under ex vitro conditions as a control. In vitro culture conditions accelerated germination and initial development of S. undatus. However, GA supplementation did not influence seed germination speed. Greater hypocotyl and epicotyl lengths were obtained in plants grown in a medium supplemented with 1 mg L-1 GA. Regardless of the concentration, BA led to the emergence of multiple axillary shoots, altering seedling architecture. Furthermore, BA and GA acted antagonistically on the morphoanatomy of the hypocotyls, increasing and decreasing the thickness of this organ, respectively. The treatments supplemented with BA regenerated twice the number of plantlets per seed. The commercial substrate allowed a higher survival rate (~85%) of the plantlets compared to sand (~30%), and it has been recommended for acclimating S. undatus plantlets obtained through in vitro propagation.
Referências
Li P, Ma X, Li Z, Yao H, Lu G, Hu H, et al. A review on the advances of dragon fruit. Trop Plants 2024;3:e041.
Abreu WC, Lopes CO, Pinto KM, Oliveira LA, Carvalho GBM, Barcelo MDFP. Physicochemical characteristics and total antioxidant activity of red and white dragon fruit. Rev Inst Adolfo Lutz 2012;71:656–61.
Ortiz-Hernández YD, Carrilo-Salazar JA. Pitahaya (Hylocereus spp.): a short review. Comunicata Sci 2012;3:220–37.
Verona-Ruiz A, Urcia-Cerna J, Paucar-Menacho LM. Pitahaya (Hylocereus spp.): Cultivo, características fisicoquímicas, composición nutricional y compuestos bioactivos. Sci Agropecuaria 2020;11(3):439–53.
Chowdhury MM, Sikder MI, Islam MR, Barua N, Yeasmin S, Eva TA, et al. A review of ethnomedicinal uses, phytochemistry, nutritional values, and pharmacological activities of Hylocereus polyrhizus J Herbmed Pharmacol 2024;13(3):353–65.
Mizrahi Y. Vine-cacti pitayas: the new crops of the world. Braz J Frutic 2014;36:124–38.
Araujo FF, Paulo Farias D, Neri-Numa IA, Pastore GM. Underutilized plants of the Cactaceae family: Nutritional aspects and technological applications. Food Chem 2021;362:130196.
Freitas STD, Mitcham EJ. Quality of Pitaya fruit (Hylocereus undatus) as influenced by storage temperature and packaging. Sci Agric 2013;70:257–62.
Calvente A, Zappi DC, Forest F, Lohmann LG. Molecular phylogeny of tribe Rhipsalideae (Cactaceae) and taxonomic implications for Schlumbergera and Hatiora. Mol Phylogenet Evol 2011;58:456–68.
Silva ADCCD, Cavallari LDL, Sabião RR, Martins ABG. Reproductive phenology of red Pitaya in Jaboticabal, SP. Cienc Rural 2015;45:585–90.
Cruz JAM, Rodríguez-Larramendi L, Ortiz-Pérez R, Fonseca-Flores MDLÁ, Herrera GR, Guevara-Hernández F. Pitahaya (Hylocereus spp.) un recurso fitogenético con historia y futuro para el trópico seco mexicano. Cult Trop 2015;36:67–76.
Wang L, Zhang X, Ma Y, Qing Y, Wang H, Huang X. The highly drought-tolerant pitaya (Hylocereus undatus) is a non-facultative CAM plant under both well-watered and drought conditions. J Hortic Sci Biotechnol 2019;94(5):643–52.
Shimomura T, Fujihara K. Stimulation of axillary shoot formation of cuttings of Hylocereus trigonus (Cactaceae) by pre-soaking in benzyladenine solution. Sci Hortic (Amsterdam) 1980;13:289–96.
Dong M. Research on varietal improvement and cultivation techniques for dragon fruit (Pitaya). Int J Hortic 2024;14.
Lopes CA, Dias GDMG, Silveira FA, Rodrigues FA, Pio LAS, Pasqual M. In vitro propagation of red dragon fruit. Plant Cell Cult Micropropag 2017;13:21–7.
Santos Junior ABD, Marques MLDS, Carvalho RDCM, Rabelo KCDC. Identificação da incidência de doenças em pitaya no cerrado. Rev Mirante 2024;2(17):64–76.
Inokuti EM, Silva DEM, Almeida MMM, Oliveira JR, Andrade IL, Silva CFB, et al. First report of Colletotrichum tropicale causing anthracnose on pitaya (Hylocereus costaricensis) in Brazil. Plant Dis 2024;108(3):797.
Masyahit M, Sijam K, Awang Y, Ghazali M. First report on bacterial soft rot disease on dragon fruit (Hylocereus spp.) caused by Enterobacter cloacae in Peninsular Malaysia. Int J Agric Biol 2009;11:659–66.
Zambrano-Forero CJ. Evaluation of growth regulators in the in vitro propagation of Hylocereus megalanthus (Pitahaya amarilla). Tumbaga Mag 2015;1:76–87.
Menezes TD, Gomes WDA, Pio LAS, Pasqual M, Ramos JD. Micropropagation and endoreduplication in red Pitaya. Biosci J 2012;28:868–76.
Zhao XY, Su YH, Cheng ZJ, Zhang XS. Cell fate switch during in vitro plant organogenesis. J Integr Plant Biol 2008;50:816–24.
Bidabadi SS, Jain SM. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants (Basel) 2020;9(6):702.
Sawsan SS, Abou-Dahab TA, Youssef EA. In vitro propagation of cactus (Cereus peruvianus L.). Arab J Biotechnol 2005;8:169–76.
Rham I, Bouchiha F, Kharbouche HA, El Maataoui S, Radi H, Choukrane B, et al. Effects of medium components on cactus pear (Opuntia ficus-indica (L.) Mill. genotype ‘M2’) organogenesis, and assessment of transplanting techniques and vitroplant fruit quality. Plant Cell Tissue Organ Cult 2025;160:31.
Morais TP, Luz JMQ, Silva SM, Resende RF, Silva AS. Applications of tissue culture in medicinal plants. Rev Bras Plantas Med 2012;14:110–21.
Stoyanova-Koleva D, Stefanova M, Zhiponova M, Kapchina-Toteva V. Effect of N6-benzyladenine and indole-3-butyric acid on photosynthetic apparatus of Orthosiphon stamineus plants grown in vitro. Biol Plant 2012;56:607–12.
Martins JPR, Schimildt ER, Alexandre RS, Castro ED, Nani TF, Pires MF, et al. Direct organogenesis and leaf-anatomy modifications in vitro of Neoregelia concentrica (Vellozo) LB Smith (Bromeliaceae). Pak J Bot 2014;46:2179–87.
Hedden P, Sponsel V. A century of gibberellin research. J Plant Growth Regul 2015;34:740–60.
Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, et al. Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci U S A 2008;105:20032–7.
Funada R, Miura T, Shimizu Y, Kinase T, Nakaba S, Kubo T, et al. Gibberellin-induced formation of tension wood in angiosperm trees. Planta 2008;227:1409–14.
Dayan J, Voronin N, Gong F, Sun TP, Hedden P, Fromm H, et al. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems. Plant Cell 2012;24(1):66–79.
Shah SH, Islam S, Mohammad F, Siddiqui MH. Gibberellic acid: a versatile regulator of plant growth, development and stress responses. J Plant Growth Regul 2023;42(12):7352–73.
Rocha ACF, Rosa DAR, Silva LASS, Dias LLL, Mosqueira JGA, Machado M, et al. Antagonistic interactions between cytokinin and gibberellin determine the size and shape of the leaves and caudex of Adenium obesum (Forssk.) Roem. & Schult. Trop Plant Biol 2025;18:55.
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 1962;15:473–97.
Brown RF, Mayer DG. Representing cumulative germination. 1. A critical analysis of single-value germination indices. Ann Bot 1988;61:117–25.
O’Brien TP, McCully ME. The study of plant structure: principles and selected methods. Melbourne: Termarcarphi Pty. Ltd.; 1981.
R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2024.
Santos PAA, Silva LC, Mendonça AMC, Dias GS, Farias AS, Damasceno SA, et al. Do different cultivation environments influence the germination and initial growth of three threatened Brazilian cacti species? S Afr J Bot 2020;132:363–70.
Resende SV, Lima-Brito A, Silva GT, Santana JRFD. In vitro seed germination and plant growth of "cabeça-de-frade" (Cactaceae). Rev Caatinga 2021;34:1–8.
Hoffmann LT, Bittencourt R, Sperlich CL, Grott IT. In vitro germination of Raulinoa echinata RS Cowan (Rutaceae): seeds and zygotic embryos. For Sci 2022;32:1187–204.
Alves CFG, Daibes LF, Barbosa FS, Moura FB, Silva JV. Physiological and biochemical alterations driven by light quality during germination and initial growth of the mandacaru cactus (Cereus jamacaru DC.). Braz J Bot. 2024;47:55-65.
Brasil. Regras para análise de sementes. Brasília (DF): Ministério da Agricultura, Pecuária e Abastecimento; 2009. 395 p.
Magnani MFC, Cardoso JC. Light and ethephon overcoming seed dormancy in friar's crown (Melocactus zehntneri, Cactaceae), a Brazilian cactus. Plants. 2023;12:4127.
Mascot-Gómez E, Flores J, López-Lozano NE, Yáñez-Espinosa L. Seed germination of Southern Chihuahuan desert cacti: effect of mucilage, light and phytohormones. Flora. 2020;263:151528.
Mazlan CPN, Lema AA, Mahmod NH. Evaluation of abiotic stress response in in vitro culture of Hylocereus undatus. J Agrobiotechnol. 2023;14:120-9.
Anagha P, Prakasha D, Kulapati H, Mallikarjun A, Vijay M, Anand N. Improving seed germination and seedling growth of dragon fruit (Hylocereus undatus) by PGRs. Indian J Agric Sci. 2024;94:187-91.
Gupta R, Chakrabarty SK. Gibberellic acid in plants: still an unsolved mystery. Plant Signal Behav. 2013;8:e25504.
Swain SM, Singh DP. Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends Plant Sci. 2005;10:123-9.
Dwiati M, Widodo P, Susanto AH. Shoot regeneration in Nepenthes mirabilis as affected by flurprimidol and GA3 application. Biodiversitas. 2023;24:4168-74.
Xiong H, Lu D, Li Z, Wu J, Ning X, Lin W, Xu X. The DELLA-ABI4-HY5 module integrates light and gibberellin signals to regulate hypocotyl elongation. Plant Commun. 2023;4:1-11.
Griffiths J, Rizza A, Tang B, Frommer WB, Jones AM. GIBBERELLIN PERCEPTION SENSOR 2 reveals genesis and role of cellular GA dynamics in light-regulated hypocotyl growth. Plant Cell. 2024;36:4426-41.
Chen Y, Han Y, Zhang M, Zhou S, Kong X, Wang W. Overexpression of the wheat expansin gene TaEXPA2 improved seed production and drought tolerance in transgenic tobacco plants. PLoS One. 2016;11:e0153494.
Locascio A, Blázquez MA, Alabadí D. Dynamic regulation of cortical microtubule organization through prefoldin-DELLA interaction. Curr Biol. 2013;23:804-9.
Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Plant development and crop yield: the role of gibberellins. Plants. 2022;11:2650.
Meng WJ, Cheng ZJ, Sang YL, Zhang MM, Rong XF, Wang ZW, Zhang XS. Type-B Arabidopsis response regulators specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell. 2017;29:1357-72.
Zubo YO, Blakley IC, Yamburenko MV, Worthen JM, Street IH, Franco-Zorrilla JM, Schaller GE. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc Natl Acad Sci U S A. 2017;114:E5995-6004.
Ivanov VB, Filin AN. Cytokinins regulate root growth through action on meristematic cell proliferation but not on the transition to differentiation. Funct Plant Biol. 2017;45:215-21.
Silva LAS, Costa ADO, Batista DS, Silva MLD, Costa APD, Rocha DI. Exogenous gibberellin and cytokinin in a novel system for in vitro germination and development of African iris (Dietes bicolor). Rev Ceres. 2020;67:402-9.
Gul H, Khattak AM, Amin N. Accelerating the growth of Araucaria heterophylla seedlings through different gibberellic acid concentrations and nitrogen levels. J Agric Biol Sci. 2006;1:25-9.
Bose SK, Yadav RK, Mishra S, Sangwan RS, Singh AK, Mishra B, Sangwan NS. Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in Mentha arvensis L. Plant Physiol Biochem. 2013;66:150-8.
Leilah AA, Khan N. Interactive effects of gibberellic acid and nitrogen fertilization on the growth, yield, and quality of sugar beet. Agronomy. 2021;11:137.
Fonouni-Farde C, Miassod A, Laffont C, Morin H, Bendahmane A, Diet A, Frugier F. Gibberellins negatively regulate the development of Medicago truncatula root system. Sci Rep. 2019;9:2335.
Tirichine L, Sandal N, Madsen LH. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science. 2007;315:104-7.
Maekawa T, Maekawa-Yoshikawa M, Takeda N, Imaizumi-Anraku H, Murooka Y, Hayashi M. Gibberellin controls the nodulation signaling pathway in Lotus japonicus. Plant J. 2009;58:183-94.
Fleishon S, Shani E, Ori N, Weiss D. Negative reciprocal interactions between gibberellin and cytokinin in tomato. New Phytol. 2011;190:609-17.
Medeiros BO, Silva LAS, Sarmento SN, Rosa DA, Barbosa LCS, Machado M, Rocha DI. Antagonistic interactions between cytokinin and gibberellin during initial stem growth and leaf structure of royal poinciana [Delonix regia (Bojer ex Hook.) Raf.]. Trees. 2024;38:1415-27.
Hepworth J, Lenhard M. Regulation of plant lateral-organ growth by modulating cell number and size. Curr Opin Plant Biol. 2014;17:36-42.
Israeli A, Burko Y, Shleizer-Burko S, Zelnik ID, Sela N, Hajirezaei MR, Bar M. Coordinating the morphogenesis-differentiation balance by tweaking the cytokinin-gibberellin equilibrium. PLoS Genet. 2021;17:e1009537.
Sprangers K, Thys S, van Dusschoten D, Beemster GTS. Gibberellin enhances the anisotropy of cell expansion in the growth zone of the maize leaf. Front Plant Sci. 2020;11:1163.
Ohashi-Ito K, Saegusa M, Iwamoto K, Oda Y, Katayama H, Kojima M, Fukuda H. The bHLH complex activates vascular cell division via cytokinin action in root apical meristem. Curr Biol. 2014;24:2053-8.
Ragni L, Greb T. Secondary growth as a determinant of plant shape and form. Semin Cell Dev Biol. 2018;79:58-67.
Costa AO, Silva LAS, Duarte IM, Machado M, Silva GZ, Silva DFP, Rocha DI. Shoot proliferation and in vitro organogenesis from shoot apex and cotyledonary explants of royal poinciana (Delonix regia), an ornamental leguminous tree. Trees. 2020;34:189-97.
Vercruysse J, Baekelandt A, Gonzalez N, Inzé D. Molecular networks regulating cell division during Arabidopsis leaf growth. J Exp Bot. 2020;71:2365-78.
Ng ZC, Mahmud SHRS, Tan SH. Effects of cytokinin in enhancing the multiplication of vegetative Hylocereus polyrhizus. Mater Sci Forum. 2021;1025:97-103.
Trivellini A, Lucchesini M, Ferrante A, Massa D, Orlando M, Incrocci L, Mensuali-Sodi A. Pitaya, an attractive alternative crop for the Mediterranean region. Agronomy. 2020;10:1065.
Lee YC, Chang JC. Development of an improved micropropagation protocol for red-fleshed pitaya 'Da Hong' with and without activated charcoal and plant growth regulator combinations. Horticulturae. 2022;8:104.
Santos CMG, Cerqueira RC, Fernandes LMDS, Rodrigues JD, Ono EO. Effect of substrates and boron on rooting of pitaya cuttings. Ceres. 2010;57:795-802.
Cavalcante ĨHL, Beckmann MZ, Martins ABG, Galbiatti JA, Cavalcante LF. Water salinity and initial development of pitaya (Hylocereus undatus). Int J Fruit Sci. 2008;7:81-92.
Silva EA, Mendonça V, Tosta MDS, Oliveira AC, Reis LL, Bardiviesso DM. Seed germination and seedling production of lettuce cultivars in different substrates. Semina Cienc Agrar. 2008;29:245-54.
Downloads
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.