Aerial imaging for early assessment of yield potential in maize

Autores

  • Barbara Nascimento Santos UFS
  • Nartênia Susane Costa Aragão UFS
  • Mikaely Rosendo dos Santos UFS
  • Tâmara Rebecca Albuquerque de Oliveira UFS
  • José Jairo Florentino Cordeiro Junior UFS
  • Gustavo Hugo Ferreira de Oliveira UFS

Palavras-chave:

High-throughput phenotyping, Plant breeding, unmanned aerial vehicles, Zea mays L.

Resumo

The use of unmanned aerial vehicles imagery has become an established practice in high-throughput phenotyping for predicting the yield potential of maize (Zea mays L.), although applying these technologies presents challenges due to regional specificities. This study aimed to assess the effectiveness of RGB (red, green, and blue) aerial imagery for the early identification of yield maize genotypes during the vegetative stage. Four genotypes were evaluated using a randomized block design with four replications. The experiment involved seven flights at two heights. Twenty-nine RGB vegetation indices were derived from image processing to discriminate genotypes based on plot-level grain yield. Nested models were fitted to predict temporal Best Linear Unbiased Predictions (BLUPs), with the most repeatable indices selected for analysis. Significant differences were observed among genotypes and plant spacing. The optimal flight timing was identified as 43 days after planting at a height of 80 meters. The indices MRCC, RmB, and RCC exhibited the highest repeatability and showed strong correlations with grain yield, demonstrating potential for RGB-based phenotyping studies. These findings highlight the utility of RGB imagery as a tool for early maize genotype selection, enhancing efficiency and accuracy in breeding programs and contributing to advancements in precision agriculture.

Referências

Artuzo FD, Foguesatto CR, Machado JA, Oliveira L, Souza AR. O potencial produtivo brasileiro: uma análise histórica da produção de milho. Rev Agroneg Meio Ambient. 2019;12(2):515-40. doi: 10.17765/2176-9168.2019v12n2p515-540

Zhang H, Zhang R, Song Y, Miu X, Zhang Q, Qu J, et al. Enhanced enzymatic saccharification and ethanol production of corn stover via pretreatment with urea and steam explosion. Bioresour Technol. 2023;376:128856. doi: 10.1016/j.biortech.2023.128856

Danilevicz MF, Bayer PE, Boussaid F, Bennamoun M, Edwards D. Maize yield prediction at an early developmental stage using multispectral images and genotype data for preliminary hybrid selection. Remote Sens. 2021;13(19):3976. doi: 10.3390/rs13193976

Adak A, Murray SC, Božinovi´C S, Lindsey R, Nakasagga S, Chatterjee S, et al. Temporal vegetation indices and plant height from remotely sensed imagery can predict grain yield and flowering time breeding value in maize via machine learning regression. Remote Sens. 2021;13(11):2141. doi: 10.3390/rs13112141

Herr AW, Adak A, Carroll ME, Elango D, Kar S, Li C, et al. Unoccupied aerial systems imagery for phenotyping in cotton, maize, soybean, and wheat breeding. Crop Sci. 2023;63(4). doi: 10.1002/csc2.21028

Ampatzidis Y, Partel V, Costa L. Agroview: Cloud-based application to process, analyze and visualize UAV-collected data for precision agriculture applications utilizing artificial intelligence. Comput Electron in Agric. 2020;174:105457. doi: 10.1016/j.compag.2020.105457

Wang W, Guo W, Le L, Yu J, Wu Y, Li D, et al. Integration of high-throughput phenotyping, GWAS, and predictive models reveals the genetic architecture of plant height in maize. Mol Plant. 2023;16(2):354-373. doi: 10.1016/j.molp.2022.11.016

Xiao J, Suab SA, Chen X, Singh CK, Singh D, Aggarwal AK, et al. Enhancing assessment of corn growth performance using unmanned aerial vehicles (UAVs) and deep learning. Measurement. 2023;214:112764. doi:10.1016/j.measurement.2023.112764

Zhang J, Dai L, Cheng F. Identification of corn seeds with different freezing damage degree based on hyperspectral reflectance imaging and deep learning method. Food Anal Methods. 2021;14(2):389-400. doi: 10.1016/j.compag.2021.106092

Abreu CA Júnior, Martins GD, Xavier LC, Bravo JV, Marques DJ, Oliveira GD. Defining the ideal phenological stage for estimating corn yield using multispectral images. Agronomy. 2023;13(9):2390. doi:10.3390/agronomy13092390

Bhargava A, Sachdeva A, Sharma K, Alsharif MH, Uthansakul P, Uthansakul M. Hyperspectral imaging and its applications: A review. Heliyon. 2024;10(12):e33208. doi:10.1016/j.heliyon.2024.e33208

Novais GT, Machado LA. Os climas do Brasil: segundo a classificação climática de Novais. Rev. Bras. Climatol. (Online). 2023;32:1-39. doi: 10.55761/abclima.v32i19.16163

DroneDeploy [Internet]. [S.l.]: DroneDeploy; [cited 2022 aug 21]. Available from: https://www.dronedeploy.com

OpenDroneMap/ODM GitHub Page; 2020 [cited 2022 mar 21]. Available from: https://github.com/OpenDroneMap/ODM

R Core Team. R: A language and environment for statistical computing. Version 4.2.1. R Foundation for Statistical Computing; 2022. Available from: https://www.R-project.org

Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 1979;8(2):127-150. doi: 10.1016/0034-4257(79)90013-0

Louhaichi M, Borman MM, Johnson DE. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001;16(1):65-70. doi: 10.1080/10106040108542184

Gitelson AA, Kaufman YJ, Stark R, Rundquist D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens Environ. 2002;80(1):76-87. doi: 10.1016/S0034-4257(01)00289-9

Ceccato P, Flasse S, Tarantola S, Jacquemoud S, Grégoire JM. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens environ. 2001;77(1):22-33. doi: 10.1016/S0034-4257(01)00191-2

Zarco-Tejada P, Berjon A, Lopezlozano R, Miller J, Martin P, Cachorro V, et al. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens Environ. 2005;99(3):271-287, 2005. doi: 10.1016/j.rse.2005.09.002

Richardson AJ, Wiegand CL. Distinguishing vegetation from soil background information. Photogramm. Eng Remote Sens. 1977; 43:1541–1552.

Meyer GE, Neto JC. Verification of color vegetation indices for automated crop imaging applications. Comput Electron Agric. 2008;63(2):282-293. doi: 10.1016/j.compag.2008.03.009

Meyer GE, Hindman TW, Laksmi K. Machine vision detection parameters for plant species identification. In G. E. Meyer & J. A. DeShazer (Eds.), Precision agriculture and biological quality. 1999. p. 327–335. (SPIE; vol. 3543).

Woebbecke DM, Meyer GE, Von Bargen K, Mortensen DA. Color indices for weed identification under various soil, residue, and lighting conditions. Trans ASAE. 1995;38(1):259-69. doi: 10.13031/2013.27838

Kataoka T, Kaneko T, Okamoto H, Hata S. Crop growth estimation system using machine vision. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003). IEEE; 2004. p. b1079-b1083 vol. 2. https://doi.org/10.1109/AIM.2003.1225492

Guijarro M, Pajares G, Riomoros I, Herrera PJ, Burgos-Artizzu XP, Ribeiro A. Automatic segmentation of relevant textures in agricultural images. Comput Electron Agric. 2011;75(1):75-83. doi: 10.1016/j.compag.2010.09.013

Guerrero JM, Pajares G, Montalvo M, Romeo J, Guijarro M. Support vector machines for crop/weeds identification in maize fields. Expert Syst Appl. 2012;39(12):11149-11155. doi: 10.1016/j.eswa.2012.03.040

Burgos-Artizzu XP, Ribeiro A, Guijarro M, Pajares G. Real-time image processing for crop/weed discrimination in maize fields. Comput Electron Agric.2011;75(2):337-346. doi: 10.1016/j.compag.2010.12.011

Bendig J, Yu K, Aasen H, Bolten A, Bennertz S, Broscheit J, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int J Appl Earth Obs Geoinf. 2015;39:79-87. doi: 10.1016/j.jag.2015.02.012

Golzarian MR, Frick RA. Classification of images of wheat, ryegrass and brome grass species at early growth stages using principal component analysis. Plant Methods. 2011;7(1). doi: 10.1186/1746-4811-7-28

Hunt ER, Cavigelli M, Daughtry CS, Mcmurtrey JE, Walthall CL. Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precis Agric. 2005;6:359-378. doi: 10.1007/s11119-005-2324-5

Hunt ER, Daughtry CS, Eitel JU, Long DS. Remote sensing leaf chlorophyll content using a visible band index. Agron J. 2011;103(4):1090-1099. doi: 10.2134/agronj2010.0395

Hague T, Tillett ND, Wheeler H. Automated crop and weed monitoring in widely spaced cereals. Precis Agric. 2006;7:21-32. doi: 10.1007/s11119-005-6787-1

QGIS [Internet]. [S.l.]: QGIS. Version 3.30.2; [cited 2022 Jun 22]. Available from: https://qgis.org

Matias FI, Caraza-Harter M, Endelman JB. FILDimageR. R package to analyze orthomosaic images from agricultural field trials. Plant Phenome J. 2020;3(1):20005. doi: org/10.1002/ppj2.20005

Bates D, Mächler M, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw. 2014;67(1):1-48. doi: 10.18637/jss.v067.i01

Herzig P, Borrmann P, Knauer U, Klück HC, Kilias D, Seiffert U, Pillen K, Maurer A. Evaluation of RGB and Multispectral Unmanned Aerial Vehicle (UAV) Imagery for High-Throughput Phenotyping and Yield Prediction in Barley Breeding. Remote Sens. 2021;13(14):2670, 2021. doi: 10.3390/rs13142670

Anderson SL, Murray SC, Malambo L, Ratcliff C, Popescu S, Cope D, et al. Prediction of maize grain yield before maturity using improved temporal height estimates of unmanned aerial systems. Plant Phenome J. 2019;2(1):1-15. doi: 10.2135/tppj2019.02.0004

Wickham H. Ggplot2: Elegrant graphics for data analysis. Version 4.2.1. Springer, 2016. Available from: https://ggplot2.tidyverse.org

Gurgel FL, Ferreira DF, Soares AC. O coeficiente de variação como critério de avaliação em experimentos de milho e feijão. Belém, PA: Embrapa Amazônia Oriental-Boletim de Pesquisa e Desenvolvimento, 2013. p.80. Available from: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/955896

Magalhaes PC, Durães FO. Fisiologia da produção de milho. Sete Lagoas: Embrapa Milho e Sorgo; 2006. (Circular Técnica, 76). Available from: https://ainfo.cnptia.embrapa.br/digital/bitstream/CNPMS/19620/1/Circ_76.pdf

Viana LA, Zambolim L, Sousa TV, Tomaz DC. Potential use of thermal camera coupled in UAV for culture monitoring. Braz J Biosyst Eng. 2018;12(3):286-298. doi: 10.18011/bioeng2018v12n3p286-298

Resende EL, Bruzi AT, Cardoso ED, Carneiro VQ, Souza VA, Barros PH, Pereira RR. High-throughput phenotyping: application in maize breeding. AgriEngineering. 2024;6(2):1078-92. doi:10.3390/agriengineering6020062

Maresma A, Chamberlain L, Tagarakis A, Kharel T, Godwin G, Czymmek KJ, et al. Accuracy of NDVI-derived corn yield predictions is impacted by time of sensing. Comput Electron Agric. 2020;169:105236. doi: 10.1016/j.compag.2020.105236

Guo Y, Xiao Y, Hao F, Zhang X, Chen J, Beurs K, et al. Comparison of different machine learning algorithms for predicting maize grain yield using UAV-based hyperspectral images. Int J of Appl Earth Obs Geoinf. 2023;124:103528. doi: 10.1016/j.jag.2023.103528

Abdulridha J, Min A, Rouse MN, Kianian S, Isler V, Yang C. Evaluation of stem rust disease in wheat fields by drone hyperspectral imaging. Sensors. 2023;2398):4154. doi: 10.3390/s23084154

Sahoo RN, Rejith RG, Gakhar S, Ranjan R, Meena MC, Dey A, et al. Drone remote sensing of wheat N using hyperspectral sensor and machine learning. Precis Agric. 2024;25(2):704-728. doi: 10.1007/s11119-023-10089-7

Downloads

Publicado

2025-12-12

Como Citar

Santos, B. N., Aragão, N. S. C., Santos, M. R. dos, Oliveira, T. R. A. de, Cordeiro Junior, J. J. F., & Oliveira, G. H. F. de. (2025). Aerial imaging for early assessment of yield potential in maize. Revista Ceres, 72, e72038. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/8221

Edição

Seção

PLANT BREEDING APPLIED TO AGRICULTURE