Flowering prediction for flood-irrigated rice in the Midwest and North regions of Brazil

Authors

  • Ludmilla Ferreira Justino UFG
  • Gutemberg Resende Honorio Filho UFG
  • David Henriques da Matta UFG
  • Luís Fernando Stone Embrapa
  • Alexandre Bryan Heinemann Embrapa

Keywords:

phenology, predictive model, climate, Oryza sativa L

Abstract

This study aimed to analyze the influence of climatic and geographic variables on the flowering process of flood-irrigated rice in the Midwest and North regions of Brazil. Agronomic data from the breeding program were related to the following variables: air temperature, relative humidity, global solar radiation, rainfall, degree days, latitude, longitude, and altitude. The analysis was performed using Multiple Linear Regression (MLR) and Generalized Additive (GAM) models. Cross-validation determined the most suitable model. The GAM model showed the best performance for both regions. In the Midwest and North of Brazil, flowering was strongly influenced by climate variables related to temperature. The rise in minimum temperatures tends to advance flowering. Higher minimum accumulated temperatures tend to delay flowering.

References

Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN & Csaki F (Eds.) Second International Symposium on Information Theory. Budapest, Academiai Kiado. p.267-281.

Alves VC, Pedro Júnior MJ, Sentelhas PC & Azzini LE (2000) Exigências térmicas do arroz irrigado ‘IAC 4440’. Revista Brasileira de Agrometeorologia, 8:171-174.,

Bahuguna RN & Jagadish KSV (2015) Temperature regulation of plant phenological development. Environmental and Experimental Botany, 111:83-90.

Bouman BAM, Kropff MJ, Tuong TP, Wopereis MCS, Ten Berge HFM & Van Laar HH (2001) ORYZA2000: modeling lowland rice. Los Banõs, International Rice Research Institute. 245p.

Breseghello F, Mello RN, Pinheiro PV, Soares DM, Lopes Júnior S, Nakano Rangel PH, Guimarães EP, Castro AP, Colombari Filho JM, Magalhães Júnior AM, Fagundes PRR, Neves PCF, Furtini IV, Utumi MM, Pereira JA, Cordeiro ACC, Silveira Filho A, Abreu GB, Moura Neto FP, Pietragalla J, Hernández MV & Crossa J (2021) Building the Embrapa rice breeding dataset for efficient data reuse. Crop Science, 61:3445-3457.

Breseghello F, Byerlee D, Panaud O, Rerkasem B, Sy A, Teng P & Kuile MT (2016) Evaluation of the CGIAR Research Program on Global Rice Science Partnership (GRiSP). CGIAR, 1:01-84.

Campbell CS, Heilman JL, Mcinnes KJ, Wilson LT, Medley JC, Wu G & Cobos DR (2001) Seasonal variation in radiation use efficiency of irrigated rice. Agricultural and Forest Meteorology, 110:45-54.

Counce P, Keisling TC & Mitchell AJ (2000) A uniform, objective, and adaptive system for expressing rice development. Crop Science, 40:436-443.

Craufurd PQ & Wheeler TR (2009) Climate change and the flowering time of annual crops. Journal of Experimental Botany, 60:2529-2539.

FAO - Food and Agriculture Organization of the United Nations (2022) World Food and Agriculture - Statistical Yearbook 2022. Available at:<https://www.fao.org/3/cc2211en/cc2211en.pdf>. Accessed on: May 31rst, 2023.

Fukai S (1999) Phenology in rainfed lowland rice. Field Crops Research, 64:51-60.

Funari FL & Tarifa JR (2017) Sunshine, global radiation and net radiation in Brazil. Revista do Instituto Geológico, São Paulo, 38:49-83.

Heinemann AB, Ramirez-Villegas J, Nascente AS, Zeviani WM, Stone LF & Sentelhas PC (2017) Upland rice cultivar responses to row spacing and water stress across multiple environments. Experimental Agriculture, 53:609-626.

Hussain S, Huang J, Huang J, Ahmad S, Nanda S, Anwar S, Awais S, Zhu C, Zhu L, Cao X, Jin Q & Zhang J (2020) Rice Production Under Climate Change: Adaptations and Mitigating Strategies. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Alikhan I & Adnan M (Eds.) Environment, Climate, Plant and Vegetation Growth. Switzerland, Springer Nature. p.659-686.

IPCC - Intergovernmental Panel on Climate Change (2022) Climate change 2022: Mitigation of Climate Change - Summary for Policymakers. Available at: <https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf>. Accessed on: May 31rst, 2023.

Jagadish SVK, Bahuguna RN, Djanaguiraman M, Gamuyao R, Prasad PVV & Craufurd PQ (2016) Implications of high temperature and elevated CO2 on flowering time in plants. Frontiers in Plant Science, 7:01-11.

Larcher W (2006) Ecofisiologia vegetal. São Carlos, Rima. 398p.

R Development Core Team (2021) R: a language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: <https://www.R-project.org/>. Accessed on: January 20th, 2021.

Rushing MAJ & Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology, 89:332-341.

Sánchez B, Rasmussen A & Porter JR (2014) Temperatures and the growth and development of maize and rice: a review. Global Change Biology, 20:408-417.

Dos Santos MP, Heinemann AB, Stone LF, da Matta DH, de Castro JR & dos Santos AB (2021) Nitrogen determination in irrigated rice using spectral reflectance. Agronomy Journal, 113:5087-5101.

Dos Santos MP, Zanon AJ, Cuadra SV, Steinmetz S, de Castro JR & Heinemann AB (2017) Yield and morphophysiological indices of irrigated rice genotypes in contrasting ecosystems. Pesquisa Agropecuária Tropical, 47:253-264.

Senanayake N, Naylor REL, Datta SK & Thomson WJ (1994) Variation in development of contrasting rice cultivars. Journal of Agricultural Science, 123:35-39.

Silva Júnior AC, Sant’Anna IC, Silva GN, Cruz CD, Nascimento M, Lopes LB & Soares PC (2023) Computational intelligence to study the importance of characteristics in flood-irrigated rice. Acta Scientiarum. Agronomy, 45:01-13.

Srikanth A & Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cellular and Molecular Life Sciences, 68:2013-2037.

Steinmetz S, Fagundes PRR, Magalhães Júnior AM, Scivittaro WB, Deibler NA, Ulguim AR, Nobre FLL, Pintanel JBA, Oliveira JG & Schneider AB (2009) Graus-dias para atingir os principais estádios de desenvolvimento de 16 cultivares de arroz irrigado. In: VI Congresso Brasileiro de Arroz Irrigado, Porto Alegre. Proceedings, SOSBAI. p.76-79.

Taiz L, Zeiger E, Moller I & Murphy A (2017) Fisiologia e desenvolvimento vegetal. 6ª ed. Porto Alegre, Artmed. 888p.

Tsuji H, Taoka K & Shimamoto K (2011) Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Current Opinion in Plant Biology, 14:45-52.

Vrigazova B (2021) The Proportion for Splitting Data into Training and Test Set for the Bootstrap in Classification Problems. Business Systems Research, 12:228-242.

Wood SN (2006) Generalized additive models: an introduction in R. New York, Chapman and Hall/CRC. 416p.

Wood S (2021) Package ‘mgcv’: version 1:8-36. Available at: <https://cran.r-project.org/web/packages/mgcv/mgcv.pdf>. Accessed on: September 10th, 2021.

Xavier AC, King CW & Scanlon BR (2016) Daily gridded meteorological variables in Brazil (1980-2013). International Journal of Climatology, 36:2644-2659.

Yang X, Wang B, Chen L, Li P & Cao C (2019) The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Scientific Reports, 9:01-12.

Ye T, Li Y, Zhang J, Hou W, Zhou W, Lu J, Xing Y & Li X (2019) Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice (Oryza sativa L). Global Ecology and Conservation, 20:01-09.

Yin X, Kropff MJ & Goudriaan J (1996) Differential effects of day and night temperature on development to flowering in rice. Annals of Botany, 77:203-213.

Downloads

Published

2025-06-03

How to Cite

Ferreira Justino, L., Resende Honorio Filho, G., Henriques da Matta, D., Stone, L. F., & Heinemann, A. B. (2025). Flowering prediction for flood-irrigated rice in the Midwest and North regions of Brazil. Revista Ceres, 71, e71007. Retrieved from https://ojs.ceres.ufv.br/ceres/article/view/7920

Issue

Section

PHYSIOLOGY AND MORPHOLOGY APPLIED TO AGRICULTURE

Most read articles by the same author(s)