Bacillus subtilis as growth-promoting rhizobacteria co-inoculated on Bradyrhizobium-treated soybean seeds in the planting furrow

Authors

  • Rafael Galbieri Instituto Mato-grossense do Algodão
  • Jéssica Alves de Oliveira Instituto Mato-grossense do Algodão
  • Bárbara França Negri Instituto Mato-grossense do Algodão
  • Alberto Souza Boldt Instituto Mato-grossense do Algodão
  • Ueverton dos Santos Rizzi Cooperativa Mista de Desenvolvimento do Agronegócio
  • Jean Louis Belot Instituto Mato-grossense do Algodão

Keywords:

inoculant, Radilix SC, bioproduct, bacteria

Abstract

Plant growth-promoting rhizobacteria (PGPR) can ensure the sustainability of agricultural growth. The objectives of this study were to characterize and determine the effects of Bacillus subtilis, isolate IMA Bs/170005, applied as co-inoculant in the soybean planting furrow. In all treatments, the seeds had been pre-inoculated with Bradyrhizobium japonicum. The experiments were carried out in a greenhouse, and in the field. Different doses of formulated (8.108 spores mL-1) product with B. subtilis (0; 0.2; 0.4; 0.8; 1.2; 1.6 and 2.0 L ha-1) were tested. The isolate proved efficient for in vitro auxin production. Under greenhouse conditions, the response to B. subtilis co-inoculation consisted of an increase of up to 26% in length of the root system. In the field, co-inoculation in the furrow proved beneficial for crop growth and yield and can be recommended. The best response rate was 0.4 L ha-1. At this dose, averaged over 20 and 40 days after sowing and compared to the control with Bradyrhizobium inoculation alone, increases of 5.3% were observed for plant height, 14.8% for shoot fresh weight, 14.1% for shoot dry weight, 8.5% for root dry weight and 6.5% for soybean yield, demonstrating the efficiency of this B. subtilis isolate as a PGPR.

References

Araújo FF, Bonifacio A, Bravaresco LG, Mendes LW & Araujo ASF (2021) Bacillus subtilis changes the root architecture of soybean grown on nutrient-poor substrate. Rhizosphere, 18:e100348.

Araújo FF & Hungria M (1999) Nodulação e rendimento de soja co-inoculada com Bacillus subtilis e Bradyrhizobium japonicum/Bradyrhi-zobium elkanii. Pesquisa Agropecuária Brasileira, 34:1633-1643.

Bai Y, D’Aoust F, Smith DL & Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Canadian Journal of Microbiology, 48:230-238.

Battisti R, Sentelhas PC, Pascoalino JAL, Sako H, Dantas JPS & Moraes MF (2018) Soybean Yield Gap in the Areas of Yield Contest in Brazil. International Journal of Plant Production, 12:159-168.

Bavaresco LG, Osco LP, Araujo ASF, Mendes LW, Bonifacio A & Araújo FF (2020) Bacillus subtilis can modulate the growth and root architecture in soybean through volatile organic compounds. Theoretical and Experimental Plant Physiology, 32:99-108.

Bocatti CR, Ferreira E, Ribeiro RA, Chueire LMO, Delamuta JRM, Kobayashi RKT, Hungria M & Nogueira MA (2022) Microbiological quality analysis of inoculants based on Bradyrhizobium spp. and Azospirillum brasilense produced “on farm” reveals high contamination with non-target microorganisms. Brazilian Journal of Microbiology, 53:267-280.

Bokhari A, Essack M, Lafi FF, Andres-Barrao CA, Jalal R, Alamoud S, Razalo R, Alzubaidy H, Shah KH, Siddique S, Bajic VB, Hirt H & Saad MM (2019) Bioprostecting desert plant Bacillus endophytic strains for their potencial to enhance plant stress tolerance. Scientific Reports, 9:e18154.

Borsari ACP & Vieira LC (2022) Mercado e perspectivas dos bioinsumos no Brasil. In: Meyer MC, Bueno AF, Mazaro SM & Silva JC (Eds.) Bioinsumos na cultura da soja. Brasília, Embrapa Soja. p.39-52.

Braga Junior GM, Chagas LFB, Martins ALL & Oliveira RS (2021) Bacillus subtilis as a growth promoter inoculant on soybean plants in field. Brazilian Journal of Development, 7:107220-107237.

Braga Junior GM, Chagas LFB, Amaral LRO, Miller LO & Chagas Junior AF (2018) Efficiency of inoculation by Bacillus subtilis on soybean biomass and productivity. Revista Brasileira de Ciências Agrárias, 13:e5571.

Chagas Junior AF, Chagas LFB, Martins ALL, Colonia BSO, Souza MC & Braga Junior GM (2021) Efficiency of Bacillus subtilis Bs 10 as a plant growth promoting inoculant in soybean crop under field conditions. Research, Society and Development, 10:e441101422141.

Chagas LFB, Martins ALL, Carvalho Filho MR, Miller LO, Oliveira JC & Chagas Junior AF (2017) Bacillus subtilis e Trichoderma sp. no incremento da biomassa em plantas de soja, feijão-caupi, milho e arroz. Revista Agri-Environmental Sciences, 3:10-18.

Conab - Companhia Nacional de Abastecimento (2022) Safras – grãossafra 2021/2022. Available at: <http://www.conab.gov.br/conabweb/index.php?PAG=131>. Accessed on: September 09th, 2022.

Costa EM, Carvalho F, Esteves JA, Nóbrega AS & Moreira FMS (2014) Resposta da soja a inoculação e co-inoculação com bactérias promotoras do crescimento vegetal e Bradyrhizobium. Enciclopédia Biosfera, 10:1678-1689.

Costa LC, Tavanti RFR, Tavanti TR & Pereira CS (2019) Desenvolvimento de cultivares de soja após inoculação de estirpes de Bacillus subtilis. Nativa, 7:126-132.

Cruz CD & Regazzi AJ (1997) Modelos biométricos aplicados ao melhoramento genético. 2aed. Viçosa, UFV. 390p.

Durham M (2013) Characterization of root colonization by the biocontrol bacterium Bacillus firmus strain GB126. Doctoral Thesis. Auburn University, Auburn. 73p.

Falk KG, Jubery TZ, O’Rourke JA, Singh A, Sarkar S, Ganapathysub-ramanian B & Singh AK (2020) Soybean root system architecture trait study through genotypic, phenotypic, and shape-base clusters. Plants Phenomics, 2020:e1925495.

Ferreira de Paula G, Demétrio GB & Matsumoto LS (2021) Biotechnological potential of soybean plant growth-promoting rhizobacteria. Revista Caatinga, 34:328-338.

Franco-Sierra ND, Posada LF, Santa-María G, Romeiro-Tabarez M, Escobar V & Álvarez JC (2020) Bacillus subtilis EA-CB0575 genome reveals clues for plant growth promotion and potential for sustainable agriculture. Functional & Integrative Genomics, 20:575-589.

Galbieri R, Davis FD, Kobayasti L, Albuquerque MCF, Echer FR & Boldt AS (2018) Influence of cotton root system size on tolerance to Rotylenchulus reniformis. Plant Disease, 102:2473-2479.

Glick BR (2012) Plant-growth-promoting bacteria: mechanisms and applications. Scientifica, 2012:963401.

Gordon SA & Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiology, 26:192-195.

Hungria M & Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Research, 65:151-164.

Kanase T & Guhey A (2018) Image based phenotyping of soybean roots for drought stress tolerance. International Journal of Researches in Biosciences, Agriculture & Technology, 13:21-25.

Lanna Filho R, Ferro HM & Pinho RSC (2010) Controle biológico mediado por Bacillus subtilis. Revista Trópica, 4:12-20.

Lopes MJS, Dias-Filho MB & Gurgel ESC (2021) Successful plant growth-promoting microbes: inoculation methods and abiotic factor. Frontiers in Sustainable Food Systems, 5:e606454.

Olanrewaju OS, Glick BR & Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World Microbiolgy Biotechnology, 33:197.

Olenska E, Malek W, Wojcik M, Swiecicka I, Thijs S & Vangronsveld J (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Science of The Total Environment, 743:e140682.

Possenti JC & Meneghello GE (2022) Tratamento se sementes e sulco de semeadura. In: Meyer MC, Bueno AF, Mazaro SM & Silva JC (Eds.) Bioinsumos na cultura da soja. Brasília, Embrapa Soja. p.85-105.

Poveda J & Gonzáles-Andrés F (2021) Bacillus as a source of phytohormones for use in agriculture. Applied Microbiology and Biotechnology, 105:8629-8645.

Tkacz A, Bestion E, Bo Z, Hortala M & Poole PS (2020) Influence of plant fraction, soil, and plant species on microbiota: a multikingdom comparison. mBio, 11:e02785-19.

Talboys PJ, Owen DW, Healey JR, Withers PJA & Jones DL (2014) Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biology, 14:51.

Tavanti TR, Tavanti RFR, Galindo FS, Simões I, Dameto LS & Sá ME (2019) Yield and quality of soybean seeds inoculated with Bacillus subtilis strains. Revista Brasileira de Engenharia Agrícola e Ambiental, 24:56-71.

Vejan P, Abdullah R, Khadiran T, Ismail S & Boyce AN (2016) Review Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability - A Review. Molecules, 21:573.

Vieira Neto AS, Pires FR, Menezes CCE, Menezes JFS, Silva AG, Silva GP & Assis RL (2008) Formas de aplicação de inoculante e seus efeitos sobre a nodulação da soja. Revista Brasileira de Ciências do Solo, 32:861-870.

Zeffa DM, Fantin LH, Koltun A, Oliveira ALM, Nunes MPBA, Canteri MG & Gonçalves LSA (2020) Effects of plant growth-promoting rhizobacteria on co-inoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018. PeerJ, 8:e7905.

Downloads

Published

2025-06-04

How to Cite

Galbieri, R., Alves de Oliveira, J., França Negri, B., Souza Boldt, A., dos Santos Rizzi, U., & Belot, J. L. (2025). Bacillus subtilis as growth-promoting rhizobacteria co-inoculated on Bradyrhizobium-treated soybean seeds in the planting furrow. Revista Ceres, 70(6), e70601. Retrieved from https://ojs.ceres.ufv.br/ceres/article/view/8152

Issue

Section

CROP PRODUCTION

Most read articles by the same author(s)