Spatial and temporal distribution of enthalpy in aviary heated by industrial furnace

Autores/as

  • Patrícia Ferreira Ponciano Ferraz UFLA
  • Gabriel Araújo e Silva Ferraz UFLA
  • Tadayuki Yanagi Junior UFLA
  • Luis Fillipe Leal de Melo UFLA
  • Jaqueline de Oliveira Castro UFLA
  • Daiane Cecchin UFF

Palabras clave:

ambience, chicks, geostatistics, poultry

Resumen

The enthalpy is a thermodynamic property that can be used to evaluate thermal environment for chickens, considering the meteorological variables that most influence the animal’s thermal comfort, the dry-bulb temperature and the relative humidity. The aim was to analyze and compare the spatial variability of enthalpy in a broiler aviary during three periods of the day (morning, afternoon and night) for 14 living days, using geostatistical techniques. The experiment was performed in a commercial broiler aviary located in the western mesoregion of Minas Gerais, Brazil, where 28,000 male Cobb chicks were housed. The heating system consisted of an industrial indirect-fired biomass furnace. The heated air was inflated by an AC motor, 2206 W of power, 1725 RPM. Geostatistical techniques were used through semivariogram analysis and isochore maps were generated through data interpolation by kriging. The semivariogram was fitted by the restricted maximum likelihood method. The used mathematical model was the spherical one. After fitting the semivariograms, the data were interpolated by ordinary kriging. The semivariograms along with the isochore maps allowed identifying the non-uniformity of spatial distribution of the enthalpy throughout the broiler aviary for three periods during 14 days. It was observed that in the first two days of life, during the three evaluated periods the poultry kept most of the time and in most of the poultry shed under conditions of enthalpy below the recommended level in the literature. In the12th and 13th days during the three analyzed periods were the most critical because they showed values below the comfort throughout the day, over the entire broiler aviary. Possible failures in the heating system were also observed, especially at night, which can be a discomfort source for poultry and hence generate productive and economic losses.

Citas

Albright D (1990) Environment control for animals and plants. St. Joseph, American Society of Agricultural Engineers Michigan. 453p.

Cambardella CA, Moorman TB, Parkin TB, Karlen DL, Novak JM, Turco RF & Konopka AE (1994) Field scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58:1501-1511.

Carvalho da CSC, dos Santos TC, Da Silva GC, Santos LV, Moreira JM de S & Botelho LF (2014) Conforto térmico animal e humano em galpões de frangos de corte no semiárido mineiro. Revista Brasileira de Engenharia Agrícola e Ambiental, 18:769-773.

Cordeiro MB, Tinôco IFF, Silva JN, Vigoderis RB, Pinto FDADC & Cecon PR (2010) Conforto térmico e desempenho de pintos de corte submetidos a diferentes sistemas de aquecimento no período de inverno. Revista Brasileira de Zootecnia, 39:217-224.

Cordeiro MB, Tinôco IFF, Mesquita Filho RM de & Sousa FC (2011) Análise de imagens digitais para a avaliação do comportamento de pintainhos de corte. Engenharia Agrícola, 31:418-426.

Ferraz GAES, Silva FM da, Oliveira MS de, Paiva AA & Ferraz PFP (2017a) Variabilidade espacial dos atributos da planta de uma lavoura cafeeira. Revista Ciência Agronômica, 48:81-91.

Ferraz PFP, Junior TY, De Lima RR, Araujo G, Ferraz S & Xin H (2017b) Desempenho de pintinhos submetidos a estresse térmico. Pesquisa Agropecuária Brasileira, 52:113-120.

Ferraz PFP, Junior TY, Ferraz GAS, Schiassi L & Campos AT (2016) Variabilidade espacial da entalpia em galpões avícolas na fase de aquecimento. Revista Brasileira de Engenharia Agrícola e Ambiental, 20:570-575.

Medeiros MM, Baêta FC, Oliveira RFM, Tinôco IFF, Albino LFT & Cecon PR (2005) Efeitos da temperatura, umidade relativa e velocidade do ar em frangos de corte. Engenharia na Agricultura, 13:277-86.

Menegali I, Tinoco IFF, Carvalho CCS, Souza CF & Martins JH (2013) Comportamento de variáveis climáticas em sistemas de ventilação mínima para produção de pintos de corte. Revista Brasileira de Engenharia Agrícola e Ambiental, 17:106-113.

Nascimento GR, Naas IA, Baracho MS, Pereira DF & Neves DP (2014) Termografia infravermelho na estimativa de conforto térmico de frangos de corte. Revista Brasileira de Engenharia Agrícola e Ambiental, 18:658-663.

Nazareno AC, Silva IJO, Nunes MLA, Castro AC De, Miranda KOS & Trabachini A (2012) Caracterização bioclimática de sistemas ao ar livre e confinado para a criação de matrizes suínas gestantes. Revista Brasileira de Engenharia Agrícola e Ambiental, 16:314-319.

Ponciano PF, Junior TY, Lima RR De, Schiassi L & Teixeira VH (2012) Adjust of regression models to estimate the rectal temperature of broilers for the first 14 days of life. Engenharia Agrícola, 32:10-20.

R Development Core Team (2017) R: A language and environment for statistical computing. Available at: <http://www.Rproject.org/>. Acessed on: August 22nd, 2017.

Ribeiro Junior PJ & Diggle PJ (2001) geoR: A package for geostatistical analysis. Available at: <http://cran.r-project.org/doc/Rnews/Rnews_2001-2.pdf>. Acessed on: August 22nd, 2017

Rodrigues VC, Silva IJO, Vieira FMC & Nascimento ST (2010) A correct enthalpy relationship as thermal comfort index for livestock. International Journal Biometeorology, 55:455-459.

Sartori JR, Gonzales E, Macari M, Pai VD & de Oliveira HN (2003) Tipos de fibras no musculo flexor longo do hálux de frangos de corte submetidos ao estresse pelo calor e frio e alimentados em “pair-feeding”. Revista Brasileira de Zootecnia, 32:918-925.

Silva GC, Nascimento MRB de M, Penha-Silva N, Fernandes E de A, Vilela DR & Souto MM (2015) Suplementação com zinco e selênio em frangos de corte submetidos a estresse cíclico de calor. Revista Ceres, 62:372-378.

Staub L, Moares MDG De, Santos MG, Komiyama CM, Gonçalves NS, Fernandes Junior RB, Ton SPA & Roque FA (2016) Ambiência interna e externa em galpão de frangos de corte nas diferentes épocas do ano e fases de criação. Nativa, 4:128-133.

Trangmar BB, Yost RS & Uehara G (1985) Applications of geostatistics to spatial studies of soil properties. Advances in Agronomy, 38:45-94.

Vieira FMC, Silva IJO, Nazareno AC, Faria PN & Miranda KOS (2016) Termorregulação de pintos de um dia submetidos a ambiente térmico simulado de transporte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 68:208-214.

Vigoderis RB, Cordeiro MB, Tinôco IFF, Menegali I, Souza Júnior JP & Holanda MCR (2010) Avaliação do uso de ventilação mínima em galpões avícolas e de sua influência no desempenho de aves de corte no período de inverno. Revista Brasileira de Zootecnia, 39:1381-1386.

Yanagi Junior T, Amaral AG, Teixeira VH & Lima RR (2011) Caracterização espacial do ambiente termoacústico e de iluminância em galpão comercial para criação de frangos de corte. Engenharia Agrícola, 31:01-12.

Descargas

Publicado

2025-04-24

Cómo citar

Ferreira Ponciano Ferraz, P., Araújo e Silva Ferraz, G., Yanagi Junior, T., Leal de Melo, L. F., de Oliveira Castro, J., & Cecchin, D. (2025). Spatial and temporal distribution of enthalpy in aviary heated by industrial furnace. Revista Ceres, 65(4), 355. Recuperado a partir de https://ojs.ceres.ufv.br/ceres/article/view/7653

Número

Sección

ARTICLE

Artículos más leídos del mismo autor/a