Silicon in wheat crop under water limitation and seed tolerance to water stress during germination

Autores/as

  • Guilherme Fontes Valory Gama UFV
  • Laryssa Bitencourt Teixeira Lima Brum UFV
  • Maycon Silva Martins UFV
  • Laércio Junio da Silva UFV
  • Denise Cunha Fernandes dos Santos Dias UFV

Palabras clave:

Triticum aestivum L., seeds quality, seeds vigor, abiotic stress

Resumen

Water stress during wheat seed germination and seedling establishment for affect the percentage and speed of germination. Silicon (Si) is related to plant tolerance to different types of stress, then the application of this nutrient in the mother plant during seed production could contribute to the improvement of the seed quality and, consequently, its tolerance to stress. The aim was to evaluate the effect of foliar application of silicon on the tolerance of wheat seeds, produced under different irrigation levels, to water stress during germination and initial seedling growth. Wheat seeds were produced under three irrigation depths (0, 50 and 100% of the total required irrigation) applied after the anthesis. The silicon was supplied in two doses by foliar application (0 and 5 mM of Si). The germination and seedling growth were performed under water stress induced by PEG 6000 at the -0.2; -0.4; -0.6 MPa osmotic potentials. In addition, in the control only distilled water was used. The reduction of the osmotic potential reduced seed germination, germination speed and seedling growth. Irrigation depths, as well as foliar application of Si, during seed production did not influence the physiological quality and tolerance of seeds to water stress during germination.

Citas

Acevedo FE, Peiffer M, Ray S, Tan CW & Felton GW (2021) Silicon-mediated enhancement of herbivore resistance in agricultural crops. Frontiers in Plant Science, 12:1-16.

Allen RG, Pereira LS, Raes D & Smith M (1998) Crop evapotranspiration - Guidelines for computing crop water requirement. Rome, FAO. 300p.

Andrade SRM, Santos JM, Tabosa DDS, Benedetti E, Albrecht J, Chagas J & Só e Silva M (2015) Estudos de cultivares de trigo submetidas ao estresse hídrico em casa de vegetação. In: Reunião da comissão brasileira de pesquisa de trigo e triticale, Passo Fundo. Biotrigo Genética/Embrapa Trigo, 1-5.

Barroso CM, Franke LB & Barros IBI (2010) Substrato e luz na germinação das sementes de rainha-do-abismo. Horticultura Brasileira, 28:236-240.

Bewley JD, Bradford KJ, Hilhorst HW & Nonogaki H (2013) Seeds: Physiology of Development, Germination and Dormancy. 3rd ed. New York, Springer. 392p.

Bilichak A & Kovalchuk I (2016) Transgenerational response to stress in plants and its application for breeding. Journal of Experimental Botany, 67:2081-2092.

Botelho BA & Perez SCJGA (2001) Estresse hídrico e reguladores de crescimento na germinação de sementes de canafístula. Scientia Agricola, 58:43-49.

Brasil (2009) Regras para análise de sementes. Brasília, MAPA/ACS. 395p.

Brito CD, Loureiro MB, Ribeiro PR, Vasconcelos P, Fernandez LG & Castro RD (2016) Osmoconditioning prevents the onset of microtubular cytoskeleton and activation of cell cycle and is detrimental for germination of Jatropha curcas L. seeds. Plant Biology, 18:1053-1057.

Bukhari MA, Ashraf MY, Ahmad R, Waraich EA & Hameed M (2015) Improving drought tolerance potential in wheat (Triticum aestivum L.) through exogenous silicon supply. Pakistan Journal of Botany, 47:1641-1648.

Chen D, Wang S, Cao B, Cao D, Leng G, Li H, Yin L, Shan L & Deng X (2016) Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Frontiers in Plant Science, 6:1241-2016.

De Macêdo ÉC, Zonta JH, Melo YL, Melo ASD, Silva DCD & Andrade WLD (2019) Changes in osmoregulatory metabolism of cotton genotypes during water deficit and recovery period. Revista Brasileira de Engenharia Agrícola e Ambiental, 23:607-613.

Dhanda SS, Sethi GS & Behl RK (2004) Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronomy and Crop Science, 190:6-12.

Eskandari H & Alizadeh-amraie A (2017) Evaluation of seed quality of wheat (Triticum aestivum) under water limition induced by a partial root-zone irrigation regime. Seed Science and Technology, 45:248-251.

Girotto L, Alves JD, Deuner S, Albuquerque ACS & Tomazoni AP (2012) Tolerância à seca de genótipos de trigo utilizando agentes indutores de estresse no processo de seleção. Revista Ceres, 59:192-199.

Hsiao TC & Xu LK (2000) Sensitivity of growth of roots versusleaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany, 51:1595-1616.

Hubbard M, Germida J & Vujanovic V (2012) Fungal endophytes improve wheat seed germination under heat and drought stress. Botany, 90:137-149.

Kashif M (2011) Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. Sky Journal of Agricultural Research, 6:971-975.

Khan MIR, Ashfaque F, Chhillar H, Irfan M & Khan NA (2021) The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. Plant Physiology and Biochemistry, 162:36-47.

Krzyzanowski FC, França-Neto JB, Gomes-Junior FG, Nakagawa J (2020) Testes de vigor baseados em desempenho de plântulas. In: Krzyzanowski FC, Vieira RD, Marcos Filho J & França Neto JB (Eds.) Vigor de sementes: conceitos e testes. Londrina, ABRATES. p.79-140

Libardi V & Costa M (1997) Consumo d’água da cultura do trigo (Triticum aestivum, L.). Revista da Faculdade de Zootecnia, Veterinária e Agronomia, 4:17-22.

Magalhães-filho JR, Amaral LRD, Machado DFSP, Medina CL & Machado EC (2008) Deficiência hídrica, trocas gasosas e crescimento de raízes em laranjeira ‘valência’ sobre dois tipos de porta-enxerto Laranjeira “Valência” sobre dois tipos de porta-enxertos. Bragantia, 67:75-82.

Marcos-filho J (2015) Fisiologia de sementes de plantas cultivadas. Londrina, ABRATES. 659p.

Monteiro JE (2009) Agrometeorologia dos cultivos: o fator meteorológico na produção agrícola. Brasília, INMET. 530p.

Nogueira RJ, Moraes JAPD, Burity HA & Bezerra Neto E (2001) Alterações na resistência à difusão de vapor das folhas e relações hídricas em aceroleiras submetidas a déficit de água. Revista Brasileira de Fisiologia Vegetal, 13:75-87.

Pereira MD & Lopes JC (2011) Germinação e desenvolvimento de plântulas de pinhão manso sob condições de estresse hídrico simulado. Semina Ciências Agrárias, 32:1837-1842.

R development core team (2021) R: A language and environment for statistical computing. Vienna, R Foundation for Statistical Computing. Available at: https://www.R-project.org/. Accessed on: January 31th, 2018.

Rao S, Du C, Li A, Xia X, Yin W & Chen J (2019) Salicylic Acid Alleviated Salt Damage of Populus euphratica: A Physiological and Transcriptomic Analysis. Forests, 10:423.

Rauf M, Munir M, Hassan MU, Ahmad M & Afzal M (2007) Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. African Journal of Biotechnology, 6:971-975.

Ribeiro AC (1999) Recomendação para o uso de corretivos e fertilizantes em Minas Gerais: 5a. aproximação. Viçosa, Comissão de Fertilidade do Solo do Estado de Minas Gerais. 359p.

Sarto MVM, Rampim L, Lana MDC, Rosset JS, Ecco M & Wobeto JR (2014) Attributes of soil chemical and development of culture wheat for each silicon fertilization. Revista Agrarian, 7:390-400.

Segalin SR, Huth C, Rosa TODA, Pahins DB, Mertz LM, Nunes UR & Martin TN (2013) Foliar application of silicon and the effect on wheat seed yield and quality. Journal of Seed Science, 35:86-91.

Steiner F, Zuffo AM, Zoz T, Zoz A & Zoz J (2017) Drought tolerance of wheat and black oat crops at early stages of seedling growth. Revista de Ciências Agrárias, 40:576-585.

Taiz L, Zeiger E, Moller IM & Murphy A (2017) Fisiologia e desenvolvimento vegetal. 6th ed. Porto Alegre, Artmed. 858p.

Tavares LC, Fonseca DÂR, Rufino CA, Oliveira SD, Brunes AP & Villela FA (2014) Adubação silicatada em trigo: rendimento e qualidade de sementes. Revista de la Facultad de Agronomía, 113:94-99.

Toledo MZ, Castro GSA, Crusciol CAC, Soratto RP, Cavariani C, Ishizuka MS & Picoli LB (2012) Aplicação foliar de silício e qualidade fisiológica de sementes de aveia-branca e trigo. Semina Ciências Agrárias, 33:1693-1702.

Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK & Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol/Biochem, 110:70-81.

Villela FA, Doni filho L & Sequeira EL (1991) Tabela de potencial osmótico em função da concentração de polietileno glicol 6000 e da temperatura. Pesquisa Agropecuária Brasileira, 26:1957-1968.

Walter J, Nagy L, Hein R, Rascher U, Beierkuhnlein C, Willner E & Jentsch A (2011) Do plants remember drought? Hints towards a drought-memory in grasses. Environmental and Experimental Botany, 71:34-40.

Yagmur M & Kaydan D (2008) Alleviation of osmotic stress of water and salt in germination and seedling growth of triticale with seed priming treatments. African Journal of Biotechnology, 7:2156–2162.

Descargas

Publicado

2025-05-19

Cómo citar

Fontes Valory Gama, G., Bitencourt Teixeira Lima Brum, L., Silva Martins, M., da Silva, L. J., & Cunha Fernandes dos Santos Dias, D. (2025). Silicon in wheat crop under water limitation and seed tolerance to water stress during germination. Revista Ceres, 68(4), 360–367. Recuperado a partir de https://ojs.ceres.ufv.br/ceres/article/view/7896

Número

Sección

PLANT HEALTH