Genetic parameters in intra-gene and inter-gene pool crosses of common bean (Phaseolus vulgaris L.) for root distribution

Autores/as

  • Rita Carolina de Melo UFSC
  • Sibila Grigolo UDESC
  • Paulo Henrique Cerutti UDESC
  • Ana Carolina da Costa Lara Fioreze UTFPR
  • Altamir Frederico Guidolin UDESC
  • Jefferson Luís Meirelles Coimbra UDESC

Palabras clave:

Middle American and Andean, stress environments, heterosis, heritability, average degree of dominance, genetic models

Resumen

The knowledge about the genetic behavior of roots can be the solution to the main climatic problems and the key for increased production of agricultural crops. In inheritance studies, breeders usually conduct crosses between contrasting individuals to obtain a significant fraction of the genetic variance. To determine genetic parameters in beans from crosses within and between Middle American and Andean gene groups, 64 populations (breeders, F1 and F2) were evaluated under field conditions for the trait root distribution. Crosses between Middle American and Andean gene groups revealed significant estimates for genetic parameters (genetic variance, heritability, and average degree of dominance) compared to intra-pool crosses. However, only 4% of all hybrid combinations evaluated (F1 and F2) showed significant effects when compared to fixed populations (parents). Coupled with the insignificant number of progenies different from the parents, the differences detected revealed inferior performance, compared to the parents. The joining of alleles with identical provenance may be the main cause of the observed effects. The breeding strategy for root distribution should consider more divergent parents.

Citas

Ceccarelli S. Efficiency of Plant Breeding. Crop Sci. 2015;55(1):87–97.

Fess TL, Kotcon JB, Benedito VA. Crop breeding for low input agriculture: A sustainable response to feed a growing world population. Sustainability. 2011;3(10):1742–1772.

Bishopp A, Lynch JP. The hidden half of crop yields. Nat Plants. 2015;1:15117.

Topp CN, Bray AL, Ellis NA, Liu Z. How can we harness quantitative genetic variation in crop root systems for agricultural improvement? J Integr Plant Biol. 2016;58(3):213–225.

Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W. Genetic control of root growth: From genes to networks. Ann Bot. 2016;117(1):9–24.

Yu P, Gutjahr C, Li C, Hochholdinger F. Genetic control of lateral root formation in cereals. Trends Plant Sci. 2016;21(11):951–961.

Toaldo D, de Morais PP, Battilana J, Coimbra JL, Guidolin AF. Selection in early generations and the occurrence of heterosis for the character root distribution. Euphytica. 2013;190(1):335–344.

de Melo RC, Schmit R, Cerutti PH, Guidolin AF, Coimbra JL. Genetic variation in the trait root distribution over segregating generations of common bean. Euphytica. 2016;207(1):665–674.

Thompson R, Brotherstone S, White IM. Estimation of quantitative genetic parameters. Philos Trans R Soc Lond B Biol Sci. 2005;360(1459):1469–77.

Hill WG. Understanding and using quantitative genetic variation. Philos Trans R Soc Lond B Biol Sci. 2010;365(1537):73–85.

Rovaris SR, de Oliveira AL, Sawazaki E, Galo PB, Ayres ME, Paterniani GZ. Genetic parameter estimates and identification of superior white maize populations. Acta Sci Agron. 2017;39(2):157–164.

González AM, Rodiño AP, Santalla M, De Ron AM. Genetics of intra-gene pool and inter-gene pool hybridization for seed traits in common bean (Phaseolus vulgaris L.) germplasm from Europe. Field Crops Res. 2009;112(1):66–76.

Zeinab EG, Helal AG. Diallel analysis and separation of genetic variance components in eight faba bean genotypes. Ann Agric Sci. 2014;59(1):147–154.

Bárbaro IM, Di Mauro AO, Centurion MA, Machado PC, Junior LS. Análises genéticas em populações de soja resistentes ao cancro da haste e destinadas para áreas canavieiras. Colloquium Agrariae. 2011;5(1):8-24.

Vieira C. O feijão comum. Cultura, doenças e melhoramento. Viçosa: Imprensa Universitária da UFV; 1967.

Bohm W. Methods of studying root systems. v. 33. Berlin: Springer-Verlag; 1979.

Steel RGD, Torrie JH, Dickey DA. Principles and procedures of statistics: a biometrical approach. 3. ed. New York: McGraw-Hill, 1997.

Brummer EC, Barber WT, Collier SM, Cox TS, Johnson R, Murray SC, et al. Plant breeding for harmony between agriculture and the environment. Front Ecol Environ. 2011;9(10):561–568.

da Rocha F, Coan MM, Coimbra JL, Bertoldo JG, Guidolin AF, Kopp MM. Root distribution in common bean populations used in breeding programs. Crop Breed Appl Biotechnol. 2010;10(1):40–47.

Velho LP, de Melo RC, Bernardy JP, Grigolo S, Guidolin AF, Coimbra JL. Root distribution and its association with bean growth habit. Ana Acad Bras Ciências. 2018;90(2):1837–1844.

Bitocchi E, Nanni L, Bellucci E, Rossi M, Giardini A, Zeuli PS, et al. Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc Natl Acad Sci USA. 2012;109(14):E788–E796.

Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet. 2014;46(7):707–713.

Freitas FD. Evidências genético-arqueológicas sobre a origem do feijão comum no Brasil. Pesq Agropec Bras. 2006;41(7):1199–1203.

Canci PC, Barbosa JF Neto, Carvalho FI. Implementação da seleção recorrente no melhoramento de plantas autógamas através da macho-esterilidade. Ciênc Rural. 1997;27(3):505–512.

Salomé PA, Bomblies K, Fitz J, Laitinen RA, Warthmann N, Yant L. The recombination landscape in Arabidopsis thaliana F2 populations. Heredity (Edinb). 2012;108(4):447–455.

Bertoldo JG, Paz R, Favreto R. Consequências da domesticação em feijão-comum para o melhoramento de plantas. Pesq Agropec Gaúcha. 2012;18(1):17–23.

Borel JC, Ramalho MA, Abreu AF. Epistasis in intra- and inter-gene pool crosses of the common bean. Genet Mol Res. 2016;15(1):15017573.

Gärtner T, Steinfath M, Andorf S, Lisec J, Meyer RC, Altmann T, et al. Improved heterosis prediction by combining information on DNAand metabolic markers. PLoS One. 2009;4:e5220.

Fiévet JB, Dillmann C, de Vienne D. Systemic properties of metabolic networks lead to an epistasis-based model for heterosis. Theor Appl Genet. 2010;120(2):463–473.

Johnson WC, Gepts P. The role of epistasis in controlling seed yield and other agronomic traits in an Andean x Mesoamerican cross of common bean (Phaseolus vulgaris L.). Euphytica. 2002;125(1):69–79.

Moreto AL, Ramalho MA, Bruzi AT. Epistasis in an Andean × Mesoamerican cross of common bean. Euphytica. 2012;186(1):755–760.

Amaro GB, Abreu AD, Ramalho MA, Silva FB. Phenotypic recurrent selection in the common bean (Phaseolus vulgaris L.) with carioca-type grains for resistance to the fungi Phaeoisariopsis griseola. Genet Mol Biol. 2007;30(3):584–588.

Leite ME, de Figueiredo IC, Dias JA, Alves FC, dos Santos JB. Reaction of common bean lines derived from recurrent selection for white mold resistance and aggressiveness of Sclerotinia sclerotiorum isolates. Bioscience J. 2017;33(5):1177–1187.

Descargas

Publicado

2025-06-03

Cómo citar

de Melo, R. C., Grigolo, S., Cerutti, P. H., da Costa Lara Fioreze, A. C., Guidolin, A. F., & Meirelles Coimbra, J. L. (2025). Genetic parameters in intra-gene and inter-gene pool crosses of common bean (Phaseolus vulgaris L.) for root distribution. Revista Ceres, 71, e71054. Recuperado a partir de https://ojs.ceres.ufv.br/ceres/article/view/7957

Número

Sección

PLANT BREEDING APPLIED TO AGRICULTURE

Artículos más leídos del mismo autor/a