High-throughput phenotyping as an auxiliary tool in the selection of corn hybrids for agronomic traits
Palabras clave:
plant breeding, indirect selection, multivariate analysis, precision agriculture, vegetation indicesResumen
High-throughput phenotyping (HTP) using vegetation indices (VIs) is an important data source for managing plant breeding programs and can be a promising tool in indirect selection. This study hypothesized that VIs are correlated with agronomic traits in corn, and therefore, HTP can be an auxiliary tool for selecting superior genotypes. The objectives were: i) to analyze the association between agronomic traits and VIs, and ii) to identify superior corn hybrids for the evaluated traits using multivariate techniques. Ten corn hybrids (AGRI 330, AGRI 340, FS575PWU, KTZ006VP3, MG545AW, MG580PW, MG711PW, MZ1780, MZ1952, and TROPI 102) were evaluated for plant height (PH), stem diameter (SD), and grain yield (GY). The VIs studied were NDVI, NDRE, EVI, GNDVI, SAVI, and MSAVI. Pearson’s correlation network was constructed to analyze the relationship between the variables, and a canonical analysis was performed to verify the inter-relationship between the variables and hybrids. The VIs evaluated are strongly positively correlated with each other and with PH. The most productive hybrids are MG545AW, FS575PWU and KTZ006VP3. Hybrid MZ1952 has higher correlations with VIs and PH. The findings reveal that VIs can be excellent auxiliary variables for selecting agronomically superior genotypes, being a promising alternative to increase corn breeding efficiency
Citas
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED & Schroeder JI (2019) Genetic strategies for improving crop yields. Nature, 575:109-118.
Bhering LL (2017) Rbio: A Tool For Biometric And Statistical Analysis Using The R Platform. Crop Breeding and Applied Biotechnology, 17:187-190.
Bonfil DJ (2017) Wheat phenomics in the field by RapidScan: NDVI vs. NDRE. Israel Journal of Plant Sciences, 64:41-54.
Borém A, Miranda GV & Fritsche-Neto R (2017) Melhoramento de plantas. Viçosa, UFV. 523p.
Chang LIU, Peng-Sen SUN & Shi-Rong L (2016) A review of plant spectral reflectance response to water physiological changes. Chinese Journal of Plant Ecology, 40:80-91.
Cruz CD, Ferreira FM & Pessoni LA (2011) Biometria aplicada ao estudo da diversidade genética. Visconde do Rio Branco, Suprema. 620p.
Cruz CD, Regazzi AJ & Carneiro PCS (2012) Modelos biométricos aplicados ao melhoramento genético. Viçosa, UFV. 732p.
Da Silva EE, Baio FHR, Teodoro LPR, Da Silva Junior CA, Borges RS & Teodoro P (2020) UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation. Remote Sensing Applications: Society and Environment, 18:100318.
Gitelson A, Kaufman YJ & Merzlyak MN (1996) Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58:289-298.
Gitelson A & Merzlyak MN (1994) Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143:286-292.
Harrison JH (1996) Managing corn silage for maximum nutritive value. In: Cornell Nutrition Conference, New York. Proceedings, Cornell University. p.29-37.
Heinz R, Teodoro LPR, Gonçalves MC, De Azevedo Peixoto L, Bhering LL & Teodoro PE (2020) Potential of maize (Zea mays L.) populations derived from commercial single-cross hybrids for extraction of partially inbred lines under different nitrogen availability. Revista de la Facultad de Ciencias Agrarias UNCuyo, 52:32-42.
Huete AR (1988) A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25:295-309.
Justice CO, Vermote E, Townshend JRG, Defries R, Roy DP, Hall DK, Salomonson VV, Privette JL, Riggs G, Strahler A, Lucht W, Myneni RB, Knyazikhin Y, Running SW, Nemani RR, Wan Z, Huete RR, Van Leeuwen W, Wolfe RE, Giglio L, Muller J, Lewis P & Barnsley MJ (1998) The Moderate Resolution Imaging Spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36:1228-1249.
Mingoti SA (2007) Análise de dados através de métodos de estatística multivariada: uma abordagem aplicada. Brasil, UFMG. 297p.
Moriwaki T, Falcioni R, Tanaka FAO, Cardoso KAK, Souza LA, Benedito E, Nanni MR, Bonato CM & Antunes WC (2019) Nitrogen-improved photosynthesis quantum yield is driven by increased thylakoid density, enhancing green light absorption. Plant Science, 278:01-11.
Oliveira MF (2017) Modelos de predição de produtividade da cultura do milho por meio de NDVI em arranjos espaciais. Master Thesis. Universidade Estadual Paulista ‘Júlio de Mesquita Filho’, Jaboticabal. 44p.
Prado Osco L, Marcato Junior J, Ramos APM, Furuya DEG, Santana DC, Teodoro LPR, Gonçalves WN, Baio FHR, Pistori H, Silva Junior CA & Teodoro PE (2020) Leaf Nitrogen Concentration and Plant Height Prediction for Maize Using UAV-Based Multispectral Imagery and Machine Learning Techniques. Remote Sensing, 12:3237.
Portz G, Molin JP & Jasper J (2012) Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agriculture, 13:33-44.
Qi J, Chehbouni A, Huete AR, Kerr YH & Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sensing and Environment, 48:119-126.
Ramalho MAP, Santos JB, Pinto CB, Souza EA, Gonçalves FMA & Souza JC (2012) Genética na agropecuária. Brasil, Editora UFLA.565p.
Ramos APM, Osco LP, Furuya DEG, Gonçalves WN, Santana DC, Teodoro LPR, Silva Junior CA, Capristo-Silva G, Li J, Baio FHR, Marcato Junior J, Teodoro PE & Pistori H (2020) A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices. Computers and Electronics in Agriculture, 178:105791.
Raper TB & Varco JJ (2015) Canopy-scale wavelength and vegetative index sensitivities to cotton growth parameters and nitrogen status. Precision Agriculture, 16:62-76.
Ribeiro ND, Cargnelutti Filho A & Poersch NL (2010) Critério de seleção indireta para a produtividade de grãos em feijão. Ciência Rural, 40:986-989.
Rouse JW, Haas RH, Schell JA, Deering DW & Harlan JC (1974) Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. United States, NASA/GSFC. 8p. (Progress Report, number 7).
Rutkoski J, Poland J, Mondal S, Autrique E, Párez LG, Crossa J, Reinolds M & Singh R (2016) Canopy temperature and vegetation indices from high-throughput phenotyping improve accuracy of pedigree and genomic selection for grain yield in wheat. G3-Genes Genomes Genetics, 6:2799-2808.
Samecima Junior EH (2018) Índice de vegetação por diferença normalizada e caracteres agronômicos em genótipos de milho. Master Thesis. Universidade Estadual Paulista ‘Júlio de Mesquita Filho’, Jaboticabal. 44p.
Santana DC, Cotrim MF, Flores MS, Baio FHR, Shiratsuchi LS, Da Silva Junior CA, Teodoro LPR & Teodoro PE (2021) UAV-based multispectral sensor to measure variations in corn as a function of nitrogen topdressing. Remote Sensing Applications: Society and Environment, 23:100534.
Santana DC, Dos Santos RG, Teodoro LPR, Da Silva Junior CA, Baio FHR, Coradi PC, & Teodoro PE (2022) Structural equation modelling and factor analysis of the relationship between agronomic traits and vegetation indices in corn. Euphytica, 218:01-08.
Silva Júnior CA, Nanni MR, Shakir M, Teodoro PE, De Oliveira-Júnior JF, Cezar E & Shiratsuchi LS (2018) Soybean varieties discrimination using nonimaging hyperspectral sensor. Infrared Physics and Technology, 89:338-350.
Shanahan JF, Schepers JS, Francis DD, Varvel GE, Wilhelm WW, Tringe JM, Schlemmer MR & Major DJ (2001) Use of remote-sensing imagery to estimate corn grain yield. Agronomy Journal, 93:583-589.
Shiratsuchi LS, Brandão ZN, Vicente LE, Victoria DC, Ducati JR, Oliveira RP & Vilela MF (2014) Sensoriamento remoto: conceitos básicos e aplicações na agricultura de precisão. In: Bernardi ACC, Naime JM, Resende AV, Bassoi LH & Inamasu RY (Eds.) Agricultura de precisão: resultados de um novo olhar. Brasília, Embrapa. p.58-73.
Taiz L, Zeiger E, Moller IM & Murphy A (2017) Fisiologia e desenvolvimento vegetal. 6ª ed. Brasil, Editora Artmed. 858p.
Taveira A, Pantaleão A, Campos C, Baio F, Teodoro L & Teodoro P (2020) Selection of soybean F3 populations for agronomic and physiological traits and vegetation indices using multivariate approaches. Revista de la Facultad de Ciencias Agrarias UNCuyo, 52:22-31.
ONU - United Nations Organization: Department of Economic and Social Affairs, Population Division (2019) World Population Prospects 2019: Highlights. New York, United Nations/Department of Economic and Social Affairs. 46p.
Xue J & Su B (2017) Significant remote sensing vegetation indices: A review of developments and applications. Journal of Sensors, 2017:01-17.
Zhao B, Duan A, Ata-Ul-Karim ST, Liu Z, Chen Z, Gong Z, Zhang J, Xiao J, Liu Z, Qin A & Ning D (2018) Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. European Journal of Agronomy, 93:113-125.
