Morphological and biochemical characterization of bacterial species of Bacillus, Lysinibacillus and Brevibacillus
Palabras clave:
home production, Bacillus thuringiensis, protein profile, antibiogramResumen
The objective of this work was to characterize reference bacteria strains, belonging to the genus Bacillus and species of correlated genera, by simplified morphological and biochemical methods. The morphological characterization is based on the aspects of the colonies, as well as cytomorphology of the species, by optical and scanning microscopy. For biochemical characterization, the sensitivity test to antimicrobials by disk-diffusion is performed. Moreover, the strains were characterized by extracting intracellular proteins. Characteristics such as shape, color, and consistency of the colonies, in addition to the type of spore and production of protein crystals were determinants for the morphological characterization of these species. The antibiogram revealed high resistance to β-lactam group antibiotics, in species of Bacillus cereus s.l group. In Bacillus subtilis s.l. group there was high susceptibility to antibiograms, mainly for species of B. subtilis. The protein profile provided specific protein patterns for some species, mainly bands of 130 e 65 kDa for B. thuringiensis, 140 e 130 kDa for Lysinibacillus sphaericus, and 115 kDa for Brevibacillus laterosporus. Our results showed that the morphological and biochemical characterizations, provided a simple identification, with easy interpretation, and low cost.
Citas
ABCBio - Associação Brasileira das Empresas de Controle Biológico (2019) On farm: os riscos de fazer uma produção caseira de biodefensivos e bioestimulantes. Available at: <https://www.abcbio.org.br/blog/on-farm/>. Accessed on: December 30th, 2019.
Abdel-Salam MS, Ameen HH, Soliman GM, Elkelany US & Asar AM (2018) Improving the nematicidal potential of Bacillus amyloliquefaciens and Lysinibacillus sphaericus against the root-knot nematode Meloidogyne incognita using protoplast fusion technique. Egyptian Journal of Biological Pest Control, 28:211-216.
Adimpong DB, Sørensen KI, Thorsen L, Stuer-Lauridsen B, Abdelgadir WS, Nielsen DS & Jespersen L (2012) Antimicrobial susceptibility, characterization of bacitracin operon and bacitracin biosynthesis of Bacillus spp. strains isolated from primary starters for African traditional bread production. Applied and Environmental Microbiology, 78:7903-7914.
Assis DM, Juliano L & Juliano MA (2011) A espectrometria de massas aplicada na classificação e identificação de microrganismos. Revista da Universidade Vale do Rio Verde, 9:344-355.
Bautista JR & Teves FG (2013) Antibiotic susceptibility testing of isolated Bacillus thuringiensis from three soil types around Iligan City, Philippines. African Journal of Microbiology Research, 7:678-682.
Bauer AW (1966) Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology, 45:149-158.
Celandroni F, Salvetti S, Gueye AS, Mazzantini D, Lupetti A, Senesi S & Ghelardi E (2016) Identification and pathogenic potential of clinical Bacillus and Paenibacillus isolates. PLoS One, 11:e0152831.
Constanski KC, Zorzetti J, Boas GTV, Ricieto APS, Fazion FAP, Boas LV & Neves PMOJ (2015) Seleção e caracterização molecular de isolados de Bacillus thuringiensis para o controle de Spodoptera spp. Pesquisa Agropecuária Brasileira, 50:730-733.
CLSI - Clinical & Laboratory Standards Institute (2019) Performance Standards for Antimicrobial Suceptibility Testing. 29º ed. Available:<https://clsi.org/media/2663/m100ed29_sample.pdf>. Accessed on: May 07th, 2020.
De Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH & Whitman W (2009) Bergey’s Manual of Systematic Bacteriology. Vol. 3: The Firmicutes. United States, Springer Science. 1450p.
Erlich HA (1989) PCR technology - Principles and Applications for DNA Amplification. New York, Stockton press. 246p.
Galperin MY (2013) Genome diversity of spore-forming Firmicutes. Microbiology Spectrum, 1:TBS-0015-2012.
Guimarães DO, Momesso LDS & Pupo MT (2010) Antibióticos: importância terapêutica e perspectivas para a descoberta e desenvolvimento de novos agentes. Química Nova, 33:667-679.
Hire RS, Sharma M, Hadapad AB & Kumar V (2014) An oligomeric complex of BinA/BinB is not formed in-situ in mosquito-larvicidal Lysinibacillus sphaericus ISPC-8. Journal of Invertebrate Pathology, 122:44-47.
Lana UDP, Tavares A, Aguiar F, Gomes E & Valicente F (2019) Avaliação da qualidade de biopesticidas à base de Bacillus thuringiensis produzidos em sistema” on farm”. Sete Lagoas, Embrapa Milho e Sorgo. 23p. (Boletim de Pesquisa e Desenvolvimento, 191).
Lanna-Filho R, Ferro HM & Pinho RSC (2010) Controle biológico mediado por Bacillus subtilis. Revista Trópica: Ciências Agrárias e Biológicas, 4:12-20.
Logan NA & Halket G (2011) Developments in the Taxonomy of Aerobic, Endospore-forming Bacteria. In: Logan NA & De Vos P (Eds.) Endospore-forming Soil Bacteria. Soil Biology. Berlin, Springer. p.01-29.
Lozano LC & Dussán J (2017) Synergistic activity between S-layer protein and spore–crystal preparations from Lysinibacillus sphaericus against Culex quinquefasciatus larvae. Current microbiology, 74:371-376.
Luna VA, King DS, Gulledge J, Cannons AC, Amuso PT & Cattani J (2007) Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre® automated microbroth dilution and Etest® agar gradient diffusion methods. Journal of Antimicrobial Chemotherapy, 60:555-567.
Madigan M, John M, Kelly B, Daniel B & David S (2016) Microbiologia de Brock. 14ª ed. Porto Alegre, Artmed. 960p.
Melatti V, Batista A, Demo C, Praça L, Brod C & Monnerat RG (2005) Determinação da susceptibilidade de Spodoptera frugiperda a diferentes subespécies de Bacillus thuringiensis. Brasília, Embrapa Recursos Genéticos e Biotecnologia. 14p. (Boletim de Pesquisa e Desenvolvimento, 88).
Monnerat R, Praça LB, Silva ES da, Montalvão SCL, Martins ES, Soares CMS & Queiroz PR (2018) Produção e controle de qualidade de produtos biológicos à base de Bacillus thuringiensis para uso na agricultura. Brasília, Embrapa Recursos Genéticos e Biotecnologia. 32p. (Documentos, 360).
Monnerat RG, Batista AC, Medeiros PTS, Martins E, Melatti V, Praça L, Dumas V, Demo C, Gomes ACM, Falcão R, Brod CS, Silva-Werneck JO & Berry C (2007) Characterization of Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda, Plutella xylostella and Anticarsia gemmatalis. Biological Control, 41:291-295.
Muniady S, Rathinam X & Subramaniam S (2011) Quick isolation and characterization for the confirmation of a novel Bacillus thuringiensis strains from chicken manure samples. African Journal of Microbiology Research, 5:3131-3137.
Praça LB, Batista AC, Martins ES, Siqueira CB, Dias DGS, Gomes ACMM, Falcão R & Monnerat RG (2004) Estirpes de Bacillus thuringiensis efetivas contra insetos das ordens Lepidoptera, Coleoptera e Diptera. Pesquisa Agropecuária Brasileira, 39:11-16.
Rabinovitch L & Oliveira EJ (2015) Coletânea de procedimentos técnicos e metodologias empregadas para o estudo de Bacillus e gêneros esporulados aeróbios correlatos. Available at:<http://www.fiocruz.br/ioc/media/Coletanea%20de%20Procedimentos%20Tecnicos%20para%20Bacillus.PDF>. Accessed on: March 25th, 2020.
Ramírez LCC, Leal LCS, Galvez ZYA & Burbano VEM (2014) Bacillus: género bacteriano que demuestra ser un importante solubilizador de fosfato. Nova, 12:165-177.
Romeiro R da S (2001) Métodos em bacteriologia de plantas. Viçosa, UFV. 279p.
Ruiu L (2013) Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects, 4:476-492.
Silva SMB da, Silva-Werneck JO, Falcão, R, Gomes AC, Fragoso RR, Quezado MT, Oliveira-Neto OB, Sá MFG de, Bravo A & Monnerat RG (2004) Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests. Journal of Applied Entomology, 128:102-107.
Valicente FH, Lana UG de P, Pereira ACP, Martins JLA & Tavares ANG (2020) Riscos à produção de biopesticida à base de Bacillus thuringiensis. Sete Lagoas, Embrapa Milho e Sorgo. 20p. (Circular Técnica, 239).
