Prospecting of popcorn inbred lines for nitrogen use efficiency and responsiveness
Palabras clave:
Zea mays var. everta, abiotic stress, nutritional stress, plant breeding, sustainable agricultureResumen
Large amounts of nitrogen (N) fertilizers applied to maize cropping systems support high yields but cause adverse environmental impacts. The development of cultivars with higher N use efficiency is essential to maintain sustainable production. Thus, the present study aimed to select popcorn inbred lines efficient and responsive to N fertilization expressing high popping expansion. Fifty-one popcorn inbred lines from different origins were evaluated in the field under low and high N availability, arranged in a randomized complete block design with three replications. The two main traits of economic interest in the crop were evaluated: grain yield (GY) and popping expansion (PE). A joint analysis of variance was performed and a scatter plot was generated to classify the inbred lines regarding the response to the N use, focusing on GY. For PE, a Scott-Knott grouping of means was conducted. Within the panel of evaluated popcorn inbred lines, it was possible to identify sources of favorable alleles for nitrogen use efficiency and popcorn expansion, highlighting the inbred lines L205, L206, L217, and L395. These genotypes emerge as potential parents to be included in mating blocks for the development of hybrids and/or breeding populations with high nitrogen use efficiency and popping expansion.
Citas
Abendroth L, Elmore RW, Boyer MJ & Marlay SK (2011) Corn growth and development. Ames, Iowa State University. 50p.
Almeida VC, Viana JMS, Oliveira HM, Risso LA, Ribeiro AFS & DeLima RO (2018) Genetic diversity and path analysis for nitrogen use efficiency of tropical popcorn (Zea mays ssp. everta) inbred lines in adult stage. Plant Breeding, 137:839-847.
Babu R, Nair SK, Kumar A, Rao HS, Verma P, Gahalain A, Singh IS & Gupta HS (2006) Mapping QTLs for popping ability in a popcorn x flint corn cross. Theoretical Applied Genetics, 112:1392-1399.
Badu-Apraku B, Oyekunle M, Fakorede MAB, Vroh I, Akinwale RO & Aderounmu M (2013) Combining ability, heterotic patterns and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica, 192:413-433.
Bänziger M, Betrán FJ & Lafitte HR (1997) Efficiency of High-Nitrogen Selection Environments for Improving Maize for Low-Nitrogen Target Environments. Crop Science, 37:1103-1109.
Bolaños J & Edmeades GO (1996) The importance of the anthesis -silking interval in breeding for drought tolerance in tropical maize. Field Crops Research, 48:65-80.
Cabral PDC, Amaral Júnior AT, Freitas ILJ, Ribeiro RM & Silva TRC (2016) Cause and effect of quantitative characteristics on grain expansion capacity in popcorn. Revista Ciência Agronômica, 47:108-117.
Ciampitti IA & Vyn TJ (2012) Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crops Research, 133:48-67.
Cruz CD (2013) GENES - a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35:271-276.
Cruz CD, Carneiro PCS & Regazzi AJ (2014) Modelos biométricos aplicados ao melhoramento genético. Viçosa, Editora UFV. 668p.
Daros M, Amaral Júnior AT, Pereira MG, Santos FS, Scapim CA, Freitas Júnior SP, Daher RF & Ávila MR (2004) Correlações entre caracteres agronômicos em dois ciclos de seleção recorrente em milho-pipoca. Ciência Rural, 34:1389-1394.
Dofing SM, D’Croz-Mason N & Buck JS (1991) Inheritance of expansion volume and yield in two popcorn x dent corn crosses. Crop Science, 31:715-718.
Ertiro BT, Beyene Y, Das B, Mugo S, Olsen M, Oikeh S, Juma C, Maryke L & Prasanna BM (2017) Combining ability and testcross performance of drought-tolerant maize inbred lines under stress and nonstress environments in Kenya. Plant Breeding, 136:197-205.
Ertiro BT, Olsen M, Das B, Gowda M & Labuschagne M (2020) Efficiency of indirect selection for grain yield in maize (Zea mays L.) under low nitrogen conditions through secondary traits under low nitrogen and grain yield under optimum conditions. Euphytica, 216:134-145.
Falconer DS & Mackay TFC (1996) Introduction to quantitative genetics. 4a ed. London, Longman Group. 480p.
FAO - Food and Agriculture Organization of the United Nations (2019) World fertilizer trends and outlook to 2022. Available at: <http://www.fao.org/3/ca6746en/CA6746EN.pdf?eloutlink=imf2fao>. Accessed on: December 3rd, 2020.
FritscheNeto R, Miranda GV, DeLima RO, Souza LV & Silva J (2010) Herança de caracteres associados à eficiência de utilização do fósforo em milho. Pesquisa Agropecuária Brasileira, 45:465471.
Gallais A & Coque M (2005) Genetic variation and selection for nitrogen use efficiency in maize: a synthesis. Maydica, 50:531-547.
Guedes FL, Ferreira Junior EJ, Castro CEC, Pereira CH, Prado PER & Souza JC (2015) The behavior of maize hybrids generated from contrasting progênies regarding the use of nitrogen. Acta Scientiarum. Agronomy, 37:45-50.
Hallauer AR, Carena MJ & Miranda Filho JB (2010) Quantitative Genetics in Maize Breeding. 3a ed. New York, Springer. 663p.
Heinz R, Ribeiro LP, Gonçalves MC, Bhering LL & Teodoro PE (2019) Selection of maize top-crosses for different nitrogen levels through specific combining ability. Bragantia, 78:208-214.
Hirel B, Le Gouis J, Ney B & Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany, 58:2369-2387.
Khan S, Amaral Júnior AT, Ferreira FRA, Kamphorst SH, Gonçalves GMB, Freitas MSM, Silveira V, Souza Filho GA, Amaral JFT, Smith REB, Hussain KI, Vivas JMS, Souza YP & Peçanha DA (2020) Limited Nitrogen and Plant Growth Stages Discriminate Well Nitrogen Use, Uptake and Utilization Efficiency in Popcorn. Plants, 9:893.
Köppen W (1948) Climatologia: conun estúdio de los climas de La Tierra. México, Fondo de Cultura Econômica. 479p.
Larish LLB & Brewbaker JL (1999) Diallel analyses of temperate and tropical popcorns. Maydica, 44:279-284.
Lu HJ, Bernardo R & Ohm HW (2003) Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers. Theoretical Applied Genetics, 106:423-427.
Lyerly PJ (1942) Some genetic and morphological characters affecting the popping expansion of popcorn. Journal American Society of Agronomy, 34:986-995.
Matta PP & Viana JMS (2001) Testes de capacidade de expansão em programas de melhoramento de milho-pipoca. Scientia Agricola, 58:845-851.
Pereira MG & Amaral Júnior AT (2001) Estimation of Genetic Components in Popcorn Based on the Nested Design. Crop Breeding Applied Biotechnology, 1:03-10.
Presterl T, Seitz G, Landbeck M, Thiemt EM, Schmidt W & Geiger HH (2003) Improving nitrogen‐use efficiency in European maize: Estimation of quantitative genetic parameters. Crop Science, 43:1259-1265.
Rangel MM, Amaral Júnior AT, Gonçalves LSA, Freitas Júnior SP & Candido LS (2011) Análise biométrica de ganhos por seleção em população de milho pipoca de quinto ciclo de seleção recorrente. Revista Ciência Agronômica, 42:473-481.
Robbins WA & Ashman RB (1984) Parent-offspring popping expansion correlations in progeny of dent corn x popcorn and flint corn x popcorn crosses. Crop Science, 24:119-121.
Rodrigues MC, Rezende WM, Silva MEJ, Faria SV, Zuffo LT, Galvão JCC & DeLima RO (2017) Genotypic variation and relationships among nitrogen-use efficiency and agronomic traits in tropical maize inbred lines. Genetic and Molecular Research, 16:gmr16039757.
Santos A, Amaral Júnior AT, Fritsche-Neto R, Kamphorst SH, Ferreira FRA, Amaral JFT, Vivas JMS, Santos PHAD, Lima VJ, Khan S, Schmitt KFM, Leite JT, Junior DRS, Bispo RB, Santos TO, Oliveira UA, Guimarães LJM & Rodriguez O (2019) Relative importance of gene effects for nitrogen-use efficiency in popcorn. PLoS One, 14:e0222726.
Santos A, Amaral Júnior AT, Kurosawa RNF, Gerhardt IFS & Fritsche-Neto R (2017) GGE Biplot projection in discriminating the efficiency of popcorn lines to use nitrogen. Ciência Agrotecnologia, 41:22-31.
Santos A, Amaral Júnior ATD, Kamphorst SH, Gonçalves GMB, Santos PHAD, Vivas JMS, Mafra GS, Khan S, Oliveira FTD, Schmitt KFM, Santos Junior DRD & Mora F (2020) Evaluation of popcorn hybrids for nitrogen use efficiency and responsiveness. Agronomy-Basel, 10:485.
Santos MX, Guimarães PEO, Pacheco CAP, França GE, Parentoni SN, Gama EEG & Lopes MA (1998) Improvement in the synthetic elite NT for soils with low nitrogen content. Pesquisa Agropecuária Brasileira, 33:55-61.
Serna-Saldivar SO (2022) Popcorn and Other Puffed Grains. In: Serna-Saldivar SO (Ed.) Snack Foods: Processing, Innovation, and Nutritional Aspects. Boca Raton, CRC Press. p.201-220.
Scapim CA, Pinto RJB, Amaral Júnior AT, Mora F & Dandolini TS (2006) Combining ability of white grain popcorn populations. Crop Breeding Applied Biotechnology, 6:136-143.
Scott AJ & Knott M (1974) Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biometrics, 30:507-512.
Sharma LK & Bali SK (2017) A Review of Methods to Improve Nitrogen Use Efficiency in Agriculture Sustainability, 10:01-23.
Silva TRC, Amaral Júnior AT, Almeida Filho JE, Freitas MSM, Guimarães AG & Kamphorst SH (2019) Contrasting phosphorus environments as indicators for popcorn breeding lines. Functional Plant Breeding Journal, 1:01-15.
Soares MO, Miranda GV, Guimarães LJM, Marriel IE & Guimarães CT (2011) Parâmetros genéticos de uma população de milho em níveis contrastantes de nitrogênio. Revista Ciência Agronômica, 42:168-174.
Taiz L, Zeiger E, Moller IM & Murphy A (2017) Fisiologia e desenvolvimento vegetal. 6a ed. Porto Alegre, ArtMed. 954p.
Torres LG, Caixeta DG, Rezende WM, Schuster A, Azevedo CF, Silva FF & DeLima RO (2019) Genotypic variation and relationships among traits for root morphology in a panel of tropical maize inbred lines under contrasting nitrogen levels. Euphytica, 215:01-18.
Vencovsky R (1987) Herança quantitativa. In: Paterniani E & Viegas GP (Eds.) Melhoramento e produção do milho. Campinas, Fundação Cargill. p.135-214.
