Classification of Coffea canephora clones in botanical varieties by discriminant analysis of the k-nearest neighbors

Autores/as

  • Marciléia Santos Souza UFAM
  • Fábio Medeiros Ferreira UFAM
  • Rodrigo Barros Rocha Embrapa
  • Maria Teresa Gomes Lopes UFAM
  • Leilane Nicolino Lamarão Oliveira Prefeitura Municipal de Urucurituba, Secretaria de Meio Ambiente

Palabras clave:

Conilon, Robusta, genetic diversity, quantitative trait

Resumen

A strategy for genetic improvement of coffee Coffea canephora plants is to aggregate through artificial crossings the characteristics of the Conilon botanical variety, such as shorter height and drought resistance, with the higher average grain size and resistance to pests and diseases of the Robusta variety. Efficiently separating the clones into these two groups with the aid of appropriate analytical procedures makes field tasks easier for professionals and, thus, allows the systematic production of intervarietal hybrids. This study verifies if the non-parametric discriminant analyzes of the k-nearest neighbors (k-NN) and k-average neighbors (k-AN) would be able to correctly classify 130 coffee clones in their botanical varieties previously designated as Conilon, Robusta and Intervarietal Hybrids populations from ten quantitative agronomic characteristics, including the processed coffee beans yield, considering the existing population genetic divergence. These characteristics were found to be good discriminatory variables and the discriminant analyzes k-NN and k-AN, based on the principle of similarity by neighborhood, classified the clones with high hit rates. The k-AN discriminant analysis was able to better discriminate intervarietal hybrids from the group clones Conilon. The results correctly reflected the genetic diversity between the botanical varieties and intervarietal hybrids of Coffea canephora, allowing us to conclude that these classification methods can assist breeders in the main task of discriminating Conilon from Robusta clones.

Citas

Anderson TW (1958) An introduction to multivariate statistical analysis. New York, John Wiley & Sons. 242p.

Bannayan M & Hoogenboom G (2009) Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Research, 111:290–302.

Box GEP (1949) A general distribution theory for a class of likelihood criteria. Biometrika, 36:317–346.

Charrier A & Berthaud J (1988) Principles and methods of coffee plant breeding: Coffea canephora. In: Clarcke RJ & Macrae R (Ed.) Coffee, Volume 4: Agronomy. London, Elsevier Applied Science. p.167-198.

Cruz CD, Carneiro PCS & Regazzi AJ (2014) Modelos biométricos aplicados ao melhoramento genético. 3rd ed. Viçosa, UFV. 668p.

Cruz CD, Ferreira FM & Pessoni LA (2020) Diversidade genética baseada em informações moleculares. In: Cruz CD, Ferreira FM & Pessoni LA (Ed.). Biometria aplicada ao estudo da diversidade genética. Visconde do Rio Branco, Suprema. p.321-428.

Cruz CD (2016) Genes Software – extended and integrated with the R, Matlab and Selegen. Acta Scientiarum Agronomy, 38:547-552.

Davis A, Govarerts R, Bridson M & Stoffelen P (2006) An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society, 152:465-512.

Dheer P, Purshottam & Singh V (2019) Classifying wheat varieties using machine learning model. Journal of Pharmacognosy and Phytochemistry, 8:47-49.

Dheer P & Singh RK (2019) Identification of indian rice varieties using machine learning classifiers. Plant Archives, 19:155-158.

Fisher RA (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188.

Fix E & Hodges JL (1951) Nonparametric discrimination: consistency properties. Randolf Field, School of Aviation Medicine. 21p.

Fix E & Hodges JL (1952) Discriminatory analysis - nonparametric discrimination: small sample performance. Randolf Field, School of Aviation Medicine. 43p.

Fonseca AFA, Sediyama T, Cruz CD, Sakiyama NS, Ferrão RG, Ferrão MAG & Bragança SM (2004) Discriminant analysis for the classification and clustering of robusta coffee genotypes. Crop Breeding and Applied Biotechnology, 4:285-289.

Ferrão RG, Ferrão MAG, Fonseca AFA, Mistro JC, Volpi PS, Verdin Filho AC, Mauri AL & Lani JA (2015) Cultivares. In: Fonseca A, Sakiyma NS e Borém A (Ed.) Café Conilon do plantio à colheita. Viçosa, UFV. p.29-49.

Giles JAD, Partelli FL, Ferreira A, Rodrigues JP, Oliosi G & Silva FHL (2018) Genetic diversity of promising ‘conilon’ coûee clones based on morpho-agronomic variables. Anais da Academia Brasileira de Ciências, 90:2437-2446.

Guedes JM, Vilela DJM, Rezende JC, Silva FL, Botelho CE & Carvalho, SP (2013) Divergência genética entre cafeeiros do germoplasma Maragogipe. Bragantia, 72:127-132.

Hair JF, Anderson RE, Tatham RL & Black WC (2005) Análise multivariada de dados. 5th ed. Porto Alegre, Bookman. 593p.

Hammer Ø, Harper DAT & Ryan PD (2001) PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4:1-9.

Khattree R & Naik DN (2000) Applied multivariate statistical with SAS Software. Cary, SAS Institute Inc. 338p.

Marcolan AL, Ramalho AR, Mendes AM, Teixeira CAD, Fernandes CF, Costa JNM, Vieira Júnior JR, Oliveira SJM, Fernandes SR & Veneziano W (2009) Cultivo dos cafeeiros conilon e robusta para Rondônia. 3rd ed. Porto Velho, Embrapa Rondônia/EmaterRO. 61p.

Mardia KV (1970) Measures of multivariate skewness and kurtosis with applications. Biometrika, 57:519-530.

Mcharo M & LaBonte DR (2010) Multivariate selection of AFLP markers associated with â-carotene in sweetpotatoes. Euphytica, 175:123-132.

Musoli P, Cubry P, Aluka P, Billot C, Dufour M, De Bellis F, Pot D, Bieysse D, Charrier A & Leroy T (2009) Genetic differentiation of wild and cultivated populations: diversity of Coffea canephora Pierre in Uganda. Genome, 52:634-646.

Nielsen LR, Cowan RS, Siegismund HR, Adsersen H, Philipp M & Fay MF (2003) Morphometric, AFLP and plastid microsatellite variation in populations of Scalesia divisa and S. incise (Asteraceae) from the Galápagos Islands. Botanical Journal of the Linnean Society, 143:243-254.

Oliveira MVC, Baliza DP, Souza GA, Carvalho SP & Assis LHB (2012) Caracterização de clones de mandioca utilizando marcadores microssatélites. Revista Ciência Agronômica, 43:170-176.

Oliveira LNL, Rocha RB, Ferreira FM, Spinelli VM, Ramalho AR & Teixeira AL (2018) Selection of Coffea canephora parents from the botanical varieties Conilon and Robusta for the production of intervarietal hybrids. Revista Ciência Rural, 48:1-7.

Rocha RB, Teixeira AL, Ramalho AR & Souza FF (2015) Melhoramento de Coffea canephora – Considerações e Metodologias. In: Marcolan AL & Espindula MC (Ed.). Café na Amazônia. Brasília, Embrapa. p.101-122.

Salari N, Shohaimi S, Najafi F, Nallappan M & Karishnarajah I (2014) A Novel Hybrid Classification Model of Genetic Algorithms, Modified k-Nearest Neighbor and Developed Backpropagation Neural Network. PLoS ONE, 9:1-50.

Silverman BW & Jones MC (1989) E. Fix & J. L. Hodges (1951): An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation. International Statistical Review, 57: 233-247.

Souza FF, Caixeta ET, Ferrão LFV, Pena GF, Sakiyama NS, Zambolim EM, Zambolim L & Cruz CD (2013) Molecular diversity in Coffea canephora germplasm conserved and cultivated in Brazil. Crop Breeding and Applied Biotechnology, 13:221-227.

Zhang N, Xu Y, Akash M, McCouch S & Oard JH (2005) Identification of candidate markers associated with agronomic traits in rice using discriminant analysis. Theoretic Applied Genetics, 110:721–729.

Descargas

Publicado

2025-05-19

Cómo citar

Santos Souza, M., Medeiros Ferreira, F., Barros Rocha, R., Gomes Lopes, M. T., & Nicolino Lamarão Oliveira, L. (2025). Classification of Coffea canephora clones in botanical varieties by discriminant analysis of the k-nearest neighbors. Revista Ceres, 68(5), 420–428. Recuperado a partir de https://ojs.ceres.ufv.br/ceres/article/view/7866

Número

Sección

PLANT BREEDING APPLIED TO AGRICULTURE

Artículos más leídos del mismo autor/a