Physiological potential of pepper seeds hydroprimed and primed with 24-epibrassinolide and subjected to salt stress

Autores

  • Júlia Gabriella da Silva Rocha Nobre UFAL
  • João Correia de Araújo Neto UFAL
  • Vilma Marques Ferreira UFAL
  • João Luciano de Andrade Melo Júnior UFAL
  • Luan Danilo Ferreira de Andrade Melo UFAL
  • Priscila Cordeiro Souto UFAL

Palavras-chave:

brassinosteroid, Capsicum chinense Jacq., Priming, abiotic stress, vigor tests

Resumo

The 24-epibrassinolide (24-EpiBL), in association with the physiological conditioning of seeds, is recognized for providing several advantages in seeds, among which the most important one is the tolerance to abiotic stresses. Thus, the objective of this work was to evaluate the vigor of pepper seeds primed with 24-EpiBL and then subjected to salt stress. Three lots of pepper seeds of the cultivar Airetama Biquinho Amarela were used. The research was divided into three steps: the first for initial characterization of seed lots upon germination and vigor tests; the second for defining the water absorption process and drying of primed seeds; and the third for the priming of seeds with water (hydropriming) and 24-EpiBL (10-8 M), as well as priming with 24-EpiBL (10-8 M) of seeds subjected to the salt stress with the following osmotic potentials: 0.0, -0.2, and -0.4 MPa. A mitigation of deleterious effects of salt stress was found in seeds hydro-primed and primed with 24-EpiBL. The use of pepper seeds hydro-primed and primed with 24-EpiBL (10-8 M) is a viable alternative for decreasing injuries, morphological and biochemical changes, and growth and development limitations caused by salt stress.

Referências

Abdel-Haleem A & El-Shaieny H (2015) Seed germination percentage and early seedling establishment of five (Vigna unguiculata L. (Walp) genotypes under salt stress. European Journal Experimental Biology, 5:22-32.

Aghaee P & Rahmani F (2020) Seed priming with 24-epibrassinolide alters growth and phenylpropanoid pathway in flax in response to water deficit. Journal of Agricultural Science and Technology, 22:1039-1052.

Amirinejad AA, Sayyari M, Ghanbari F & Kordi S (2017) Salicylic acid improves salinity-alkalinity tolerance in pepper (Capsicum annuum L.). Advances in Horticultural Science, 31:157-163.

Araújo PC, Torres SB, Benedito CP & Paiva EPD (2011) Condicionamento fisiológico e vigor de sementes de maxixe. Revista Brasileira de Sementes, 33:482-489.

Arif M, Jan MT, Mian IA, Khan SA, Hollington P & Harris D (2014) Evaluating the impact of osmopriming varying with polyethylene glycol concentrations and durations on soybean. International Journal of Agriculture and Biology, 16:349-364.

Batista BT, Binotti SFF, Cardoso ED, Bardiviesso EM & Costa E (2015) Aspectos fisiológicos e qualidade de mudas da pimenteira em resposta ao vigor e condicionamento das sementes. Bragantia, 74:367-373.

Daszkowska-Golec A (2011) Arabidopsis seed germination under abiotic stress asa concert of action of phytohormones. OMICS: A Journal of Integrative Biology, 15:763-774.

Delian E, Lupu C & Sãvulescu E (2018) Effect of different priming treatments on seeds germination and early seedlings growth of tomato. Current Trends in Natural Sciences, 7:38-46.

Dkhil BB, Issa A & Denden M (2014) Germination and seedling emergence of primed okra (Abelmoschus esculentus L.) seeds under salt stress and low temperature. American Journal Plant Physiology, 9:38-45.

Fazlali R, Asli DE & Moradi P (2013) The effect of seed priming by ascorbic acid on bioactive compounds of naked seed pumpkin (Cucurbita pepo var. styriaca) under salinity stress. International Journal of Farming and Allied Scienses, 2:587-590.

Fridman Y & Savaldi-Goldstein S (2013) Brassinosteroids in growth control: how, when and where. Plant Science, 209:24-31.

Guedes RS, Alves EU, Oliveira LSB, Andrade LA, Gonçalves EP & Melo PARF (2011) Envelhecimento acelerado na avaliação da qualidade fisiológica de sementes de Dalbergianigra (Vell.) Fr. All. Semina: Ciências Agrárias, 32:443-450.

Hannachi S & Van Labeke MC (2018) Salt stress affects germination, seedling growth and physiological responses differentially in eggplant cultivars (Solanum melongena L.). Scientia Horticulturae, 228:56-65.

Holbig LS, Baudet L & Villela FA (2011) Hidrocondicionamento de sementes de cebola. Revista Brasileira de Sementes, 33:171-176.

Kikuti ALP & Marcos-Filho J (2009) Condicionamento fisiológico de sementes de couve-flor. Horticultura Brasileira, 27:240-245.

Lopes HM, Menezes BRS, Silva ER & Rodrigues DL (2011) Condicionamento fisiológico de sementes de cenoura e pimentão. Revista Brasileira de Agrociências, 17:296-302.

Lopes KP, Nascimento MGR, Barbosa RCA & Costa CC (2014) Salinidade na qualidade fisiológica em sementes de Brassicas oleracea L. var. itálica. Semina: Ciências Agrárias, 35:2251-2259.

Maguire JD (1962) Speed of germination and in selection and evaluation for seedling emergence and vigor. Crop Science, 2:176-177.

Maia-Júnior SDOM, Andrade JR, Lima RF, Guimarães RFB, Souza AR & Nascimento R (2021) Effects of 24-epibrassinolide on germination and growth of tomato seedlings under salt stress. Revista de Agricultura Neotropical, 8:4842-4842.

MAPA - Ministério da Agricultura, Pecuária e Abastecimento (2009) Regras para análise de sementes. Brasília, MAPA/ACS. 399p.

Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A & Ramalingam J (2020) Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 21:8258.

Masetto TE, Faria JMR, Fraiz ACR & Rezende RKS (2013) Condicionamento osmótico de sementes de Sesbania virgata (CAV.) Pers (Fabaceae). Cerne, 19:629-636.

Nascimento WM & Lima LB (2008) Condicionamento osmótico de sementes de berinjela visando a germinação sob temperaturas baixas. Revista Brasileira de Sementes, 30:224-227.

Oliveira FA, Guedes RA, Gomes LP, Bezerra F, Lima LA & Oliveira MK (2015) Interação entre salinidade e bioestimulante no crescimento inicial de pinhão-manso. Revista Brasileira de Engenharia Agrícola e Ambiental, 1:204-210.

Pereira IC, Catão HCRM & Caixeta F (2020) Seed physiological quality and seedling growth of pea under water and salt stress. Revista Brasileira de Engenharia Agrícola e Ambiental, 24:95-100.

Rocha JGS, Neto JCA, Nascimento ES, Rodrigues M, Ferreira VM & Silva CB (2020) Influence of 24-epibrassinolide on the vigor of lettuce seeds. Brazilian Journal of Development, 6:53627-53641.

Sá SVF, Souto LS, Paiva PE, Torres SB & Oliveira FA (2019) Initial development and tolerance of pepper species to salinity stress. Revista Caatinga, 32:826-833.

Sarker A, Hossain MI & Kashem MA (2014) Salinity (NaCl) tolerance of four vegetable crops during germination and early seedling growth. International Journal Latest Research Science Technology, 3:91-95.

Serna M, Coll Y, Zapata PJ, Botella MA, Pretel MT & Amorós A (2015) A brassinosteroid analogue prevented the effect of salt stress on ethylene synthesis and polyamines in lettuce plants. Scientia Horticulturae, 185:105-112.

Shahid MA, Pervez MA, Bala RM, Mattson NS, Rashid A, Ahmad R & Abbas T (2011) Brassinosteroid (24-epibrassinolide) enhances growth and alleviates the deleterious effects induced by salt stress in pea (Pisum sativum L.). Australian Journal of Crop Science, 5:500-510.

Silva CB, Marcos-Filho J, Jourdan P & Bennet MA (2015) Performance of bell pepper seeds in response to drum priming with addition of 24-epibrassinolide. HortScience, 50:873-878.

Soliman WS & El-Shaieny AHA (2014) Effect of saline water on germination and early growth stage of five Apiaceae species. African Journal of Agricultural Research, 9:713-719.

Tanveer M, Shahzad B, Sharma A, Biju S & Bhardwaj R (2018) 24-epibrassinolide: an active brassinolide and its role in salt stress tolerance in plants: a review. Plant Physiology and Biochemistry, 130:69-79.

Thiam M, Champion A, Diouf D & Ourèye SYM (2013) NaCl effects on in vitro germination and growth of some senegalese cowpea (Vigna unguiculata (L.) Walp.) cultivars. International Scholarly Research Notices, 2013:01-12.

Torres SB (2005) Envelhecimento acelerado em sementes de pimenta-malagueta (Capsicum frutescens L.). Revista Ciência Agronômica, 36:98-104.

Torres SB, Dantas AH, Pereira MFS, Benedito CP & Silva FHA (2012) Deterioração controlada em sementes de coentro. Revista Brasileira de Sementes, 34:319-326.

Wu W, Zhang Q, Ervin E, Yang Z, Zhang X (2017) Physiological mechanism of enhancing salt stress tolerance of perennial ryegrass by 24-epibrassinolide. Frontiers in Plant Science, 8:01-11.

Xiong JL, Kong HY, Akram NA, Bai X, Ashraf M, Tan RY & Turner NC (2016) 24-epibrassinolide increases growth, grain yield and β-ODAP production in seeds of well-watered and moderately water-stressed grass pea. Plant Growth Regulation, 78:217-231.

Zavariyan AM, Rad MY & Asghari M (2015) Effect of seed priming by potassium nitrate on germination and biochemical indices in Silybum marianum L. under salinity stress. International Journal of Life Sciences, 9:23-29.

Downloads

Publicado

2025-06-03

Como Citar

da Silva Rocha Nobre, J. G., Correia de Araújo Neto, J., Marques Ferreira, V., de Andrade Melo Júnior, J. L., Ferreira de Andrade Melo, L. D., & Cordeiro Souto, P. (2025). Physiological potential of pepper seeds hydroprimed and primed with 24-epibrassinolide and subjected to salt stress. Revista Ceres, 71, e71033. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/7994

Edição

Seção

VEGETATIVE AND SEMINIFEROUS PROPAGATION

Artigos mais lidos pelo mesmo(s) autor(es)