Different water availability in the economic water productivity in soybean cultivars

Autores

  • Silvana Antunes Rodrigues UFSM
  • Marcia Xavier Peiter UFSM
  • Adroaldo Dias Robaina UFSM
  • Jhosefe Bruning UFSM
  • Laura Dias Ferreira UFSM
  • Miguel Chaiben Neto UFSM

Palavras-chave:

irrigation, Glycine max L, water use efficiency, maximum technical efficiency

Resumo

The present work aims to evaluate grain productivity, water productivity, and economic water productivity of three soybean cultivars under supplementary irrigation. Two experiments were conducted during the 2018 and 2019 harvests in Santa Maria/RS, Brazil. The experimental design consisted of a random bifactorial block design with six irrigation depths as the first factor and three soybean cultivars (Glycine max L.) as the second. The irrigation system used was the conventional fixed sprinkler, with a fixed irrigation shift of seven days. Crop productivity, water productivity, and economic water productivity were evaluated. The highest productivity was for 100% of reference evapotranspiration (ETo) in both harvests. Maximum technical efficiency was obtained for depths of 73.03% (Harvest 1) and 77.94% (Harvest 2) of ETo. Both harvests presented higher water productivity and economic water productivity in the 50% and 25% ETo depths respectively. Productivity is increased with irrigation, and the economic water productivity is maximized with reduction of depth.

Referências

Adeboye OB, Schultz B, Adekalu KO & Prasad K (2015) Crop water productivity and economic evaluation of drip-irrigated soybeans (Glyxine max L. Merr.). Agriculture & Food Security, 4:01-13.

Allen RG, Pereira LS, Raes D & Smith M (1998) Crop evapotranspiration - Guidelines for computing crop water requirements. Rome, FAO. 15p. (FAO irrigation and drainage paper, 56).

Alvares CA, Stape JL, Sentelhas PC, De Moraes Gonçalves JL & Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22:711-728.

Araji HA, Wayayok A, Bavani AM, Amiri E, Abdullah AF, Daneshian J & Teh CBS (2018) Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models. Agricultural Water Management, 205:63-71.

Arruda MR, Moreira A & Pereira JCR (2014) Amostragem e coleta de solos para fins de fertilidade. Manaus, Embrapa Amazônia Ocidental. 18p. (Documento, 115).

Battisti R & Sentelhas PC (2014) New agroclimatic approach for soybean sowing dates recommendation: A case study. Revista Brasileira de Engenharia Agrícola e Ambiental, 18:1149-1156.

Battisti R & Sentelhas PC (2017) Improvement of soybean resilience to drought through deep root system in Brazil. Agronomy Journal, 109:1612-1622.

Battisti R, Sentelhas PC, Parker PS, Nendel C, Camara GMS, Farias JRB & Basso CJ (2018) Assessment of crop-management strategies to improve soybean resilience to climate change in Southern Brazil. Crop and Pasture Science, 69:154-162.

Bariviera G, Dallacort R, De Freitas PS, Barbieri JD & Daniel DF (2020) Dual crop coefficient for the early-cycle soybean cultivar SoyTech 815 RR. Revista Brasileira de Engenharia Agrícola e Ambiental, 24:75-81.

Ben HM, Monaco F, Facchi A, Romani M, Valè G & Sali G (2017) Desempenho econômico de variedades tradicionais e modernas de arroz sob diferentes sistemas de manejo da água. Sustentabilidade, 9:347.

Candoğan B & Yazgan S (2016) Yield and quality response of soybean to full and deficit irrigation at different growth stages under sub-humid climatic conditions. Journal of Agricultural Sciences, 22:129-144.

Candogan BN, Sincik M, Buyukcangaz H, Demirtas C, Goksoy AT & Yazgan S (2013) Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions. Agricultural Water Management, 118:113-121.

CQFS RS/SC - Comissão de Química e Fertilidade do Solo do RS/SC (2016) Manual de calagem e adubação para os Estados do Rio Grande do Sul e de Santa Catarina. 11ª ed. Porto Alegre, Sociedade Brasileira de Ciência do Solo/Núcleo Regional Sul. 376p.

CONAB - Companhia Nacional de Abastecimento (2020) Acompanhamento da Safra Brasileira - Grãos. Available at: <https://www.conab.gov.br/infoagro/safras/graos>. Accessed on: October 13th, 2021.

Çetin O & Kara A (2019) Assesment of water productivity using different drip irrigation systems for cotton. Agricultural Water Management, 223:105693.

Gajić B, Kresović B, Tapanarova A, Životić L & Todorović M (2018) Effect of irrigation regime on yield, harvest index and water productivity of soybean grown under different precipitation conditions in a temperate environment. Agricultural Water Management, 210:224-231.

Gava R, Lima SFD, Santos OFD, Anselmo JL, Cotrim MF & Kühn IE (2018) Water depths for different soybean cultivars in center pivot. Revista Brasileira de Engenharia Agrícola e Ambiental, 22:10-15.

Gava R, Anselmo JL, Neale CM, Frizzone JA & Leal AJ (2017) Different soybean plant populations under central pivot irrigation. Engenharia Agrícola, 37:441-452.

Grassini P, Torrion JA, Yang HS, Rees J, Andersen D, Cassman KG & Specht JE (2015) Soybean yield gaps and water productivity in the western U.S. Corn Belt. Field Crops Research, 179:150-163.

Kirchner JH, Robaina AD, Peiter MX, Torres RR, Mezzomo W, Ben LHB, Pimenta BD & Pereira AC (2019) Funções de produção e eficiência no uso da água em sorgo forrageiro irrigado. Revista Brasileira de Ciências Agrárias, 14:01-09.

Kukal MS & Irmak S (2020) Impact of irrigation on interannual variability in United States agricultural productivity. Agricultural Water Management, 234:01-10.

Millar AA (1978) Drenagem de terras agrícolas: bases agronômicas. São Paulo, McGrawHill do Brasil. 276p.

Montoya F, García C, Pintos F & Otero A (2017) Effects of irrigation regime on the growth and yield of irrigated soybean in temperate humid climatic conditions. Agricultural Water Management, 193:30-45.

Nied AH, Heldwein AB, Estefanel V, Silva JC & Alberto CM (2005) Épocas de semeadura do milho com menor risco de ocorrência de deficiência hídrica no município de Santa Maria, RS, Brasil. Ciência Rural, 35:995-1002.

Noellemeyer E, Fernández R & Quiroga A (2013) Crop and tillage effects on water productivity of dryland agriculture in Argentina. Agriculture, 3:01-11.

Nóia Júnior R de S & Sentelhas PC (2019) Soybean-maize off-season double crop system in Brazil as affected by El Niño Southern Oscillation phases. Agricultural Systems, 173:254-267.

Panday SC, Choudhary M, Singh S, Meena VS, Mahanta D, Yadav RP, Pattanayak A & Bisht JK (2018) Increasing farmer’s income and water use efficiency as affected by long-term fertilization under a rainfed and supplementary irrigation in a soybean-wheat cropping system of Indian mid-Himalaya. Field Crops Research, 219:214-221.

Pires JLF, Costa JA, Rambo L & Ferreira FG (2005) Métodos para a estimativa do potencial de rendimento da soja durante a ontogenia. Pesquisa Agropecuária Brasileira, 40:337-344.

Ribeiro ABM, Bruzi AT, Zuffo AM, Zambiazzi EV, Soares IO, Vilela NJD, Pereira JL de AR & Moreira SG (2017) Productive performance of soybean cultivars grown in different plant densities. Ciência Rural, 47:01-08.

Sahoo P, Brar AS & Sharma S (2018) Effect of methods of irrigation and sulphur nutrition on seed yield, economic and bio-physical water productivity of two sunflower (Helianthus annuus L.) hybrids. Agricultural Water Management, 206:158-164.

Santos HG dos, Jacomine PKT, Anjos LHC dos, Oliveira VA de, Lumbreras JF, Coelho MR, Almeida JA, De Araujo Filho JC, De Oliveira JB & Cunha TJF (2018) Sistema brasileiro de classificação de solos. 5ª ed. Brasília, Embrapa. 356p.

Santos JWS dos, Barbosa WSS, Teodoro IPO, Silva JAC, Teodoro I & Lyra GB (2019) Desempenho produtivo da soja com irrigação suplementar nos tabuleiros costeiros de alagoas. Revista Brasileira de Agricultura Irrigada, 13:3714-3723.

Tagliapietra EL, Zanon AJ, Streck NA, Balest DS, Rosa SL, Bexaira KP, Richter GL, Ribas GG & Silva MR (2021) Biophysical and management factors causing yield gap in soybean in the subtropics of Brazil. Agronomy Journal, 113:1882-1894.

Tewelde AG (2019) Evaluating the Economic Water Productivity underfull and deficit irrigation; the case of sesamecrop (Sesumum indicum L.) in woreda Kafta-Humera, Tigrai-Ethiopia. Water Science, 33:75-83.

Uygan D, Cetin O, Alveroglu V & Sofuoglu A (2021) Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation. Agricultural Water Management, 255:106989.

Zanon AJ, Streck NA & Grassini P (2016) Climate and management factors influence soybean yield potential in a subtropical environment. Agronomy Journal, 108:1447-1454.

Zhang B, Feng G, Ahuja LR, Kong X, Ouyang Y, Adeli A & Jenkins JN (2018) Soybean crop-water production functions in a humid region across years and soils determined with APEX model. Agricultural Water Management, 204:180-191.

Downloads

Publicado

2025-06-03

Como Citar

Antunes Rodrigues, S., Xavier Peiter, M., Dias Robaina, A., Bruning, J., Dias Ferreira, L., & Chaiben Neto, M. (2025). Different water availability in the economic water productivity in soybean cultivars. Revista Ceres, 70(1), 1–10. Recuperado de https://ojs.ceres.ufv.br/ceres/article/view/8071

Edição

Seção

AGRICULTURAL ENGINEERING