Microbiolization of cowpea seeds with commercial strains of Trichoderma asperellum and T. harzianum

Authors

  • José Manoel Ferreira de Lima Cruz UFLA
  • Otília Ricardo de Farias UFPB
  • Isadora Nayara Bandeira Medeiros de Moura UFPB
  • Jéssica Aline Linné UFGD
  • Luiz Daniel Rodrigues da Silva UFPB
  • Luciana Cordeiro do Nascimento UFPB

Keywords:

biological control

Abstract

Seed microbiolization has been increasingly contributed to researches due to its beneficial action in the initial growth of seedlings and control of phytopathogens. Thus, the aim of this study was to evaluate the initial growth and control of fungi associated with cowpea seeds by the seed microbiolization with commercial strains of Trichoderma spp. Seeds of cowpea cultivar ‘BRS Gurguéia’ were analyzed in a completely randomized design, with four replications, using five commercial strains based on Trichoderma asperellum and T. harzianum (Trichodermax®, Quality®, Trichodermil®, Agroguard® and Ecotrich®) and two control treatments, represented by untreated seeds (negative control) and the fungicide carbendazim (positive control). Sanity, germination, emergence and electrical conductivity tests of seeds were carried out to confirm the hypotheses. Seed microbiolization with Trichoderma asperellum and Trichoderma harzianum are effective in reducing the incidence of fungi and have antimicrobial activity similar to synthetic fungicide. The strains T. asperellum T-211 (Trichodemax®), T. asperellum URM-5911 (Quality®) e T. harzianum ESALQ-1306 (Trichodermil®) promote increases for seed vigor. The percentage of seed emergence is maximized with the application of strains T. asperellum (Quality® and Trichodemax®). The commercial strains of Trichoderma tested increase the initial growth of cowpea seedlings cv. ‘BRS Gurguéia’.

References

Amorim L, Rezende JAM, Bergamin Filho A & Camargo LEA (2016) Manual de Fitopatologia: doença de plantas cultivadas. 5ª ed. Ouro Fino, Agronômica Ceres. 820p.

Bezuidenhout J, Van Rensburg L & Jansen Van Rensburg P (2012) Molecular similarity between gibberellic acid and gliotoxin: unravelling the mechanism of action for plant growth promotion by Trichoderma harzianum. Journal of Agricultural Science and Technology, 6:703-712.

Brasil (2009) Regras para análise de sementes. Brasília, MAPA. 395p.

Carvalho DDC, Mello SCMD, Lobo Júnior M & Geraldine AM (2011) Biocontrol of seed pathogens and growth promotion of common bean seedlings by Trichoderma harzianum. Pesquisa Agropecuária Brasileira, 46:822-828.

Carvalho DDC, Lobo Jr M, Martins I, Inglis PW & Mello SCM (2014) Biological control of Fusarium oxysporum f. sp. phaseoli by Trichoderma harzianum and its use for common bean seed treatment. Tropical Plant Pathology, 39:384-391.

CONAB - Companhia Nacional de Abastecimento (2019) Acompanhamento da safra brasileira de grãos: safra 2018/2019. Brasil, Conab. 47p. (Boletim, 12º Levantamento de grãos).

Cruz JMFL, Medeiros ECD, Farias ORD, Silva ECD & Nascimento LCD (2020) Microbiolization of organic cotton seeds with Trichoderma sp. and Saccharomyces cerevisiae. Journal of Seed Science, 42:01-09.

De Sá MNF, Lima JS, Jesus FN & Perez JO (2019) Microbiolização na qualidade de sementes e crescimento inicial de plantas de Vigna unguiculata L. Walp. Acta Brasiliensis, 3:111-115.

Farias OR, Nascimento LCD, Cruz JMFL, Silva HAO, Mello MDDO, Bruno RDLA & Arriel NHC (2019) Biocontrol Potential of Trichoderma and Bacillus Species on Fusarium oxysporum f. sp vasinfectum. Journal of Experimental Agriculture International, 34:01-11.

Gava CAT & Menezes MEL (2012) Eficiência de isolados de Trichoderma spp no controle de patógenos de solo em meloeiro amarelo. Revista Ciência Agronômica, 43:633-640.

Gomes CDL, Sá JM, Rodrigues MHBS, Sousa VFO & Bomfim MP (2019) Production of Tamarindus indica L. seedlings submitted to substrates and pre-germination methods. Pesquisa Agropecuária Tropical, 49:54029.

Hajieghrari B (2010) Effects of some Iranian Trichoderma isolates on maize seed germination and seedling vigor. African Journal of Biotechnology, 9:4342-4347.

Lima JME, Fagundes GS & Smiderle OJ (2014) Qualidade fisiológica de sementes de feijão-caupi tratadas com terra diatomácea e infestadas por carunchos. Revista em Agronegócios e Meio Ambiente, 7:733-746.

Machado CG, Martins CC, Santana DG, Cruz SCS & Oliveira SSC (2011) Adequação do teste de condutividade elétrica para sementes de Pisum sativum subsp Arvense. Ciência Rural, 41:988-995.

Maguire JD (1962) Speed of germination aid in selection and evaluation of seedling emergence and vigor. Crop Science, 2:176-177.

Marcos-Filho J (2015) Fisiologia de sementes de plantas cultivadas. 2ª ed. Londrina, Abrates. 659p.

Missio EL, Moro T, Brum DL, Pollet CS & Muniz MFB (2016) Vigor e germinação de sementes de Jacaranda mimosifolia d. don. (Bignoniaceae) após o tratamento e armazenamento. Caderno de Pesquisa, 28:42-53.

Munizzi A, Braccini AL, Rangel MAS, Scapim CA & Albrecht LP (2010) Qualidade de sementes de quatro cultivares de soja, colhidas em dois locais no estado de Mato Grosso do Sul. Revista Brasileira de Sementes, 32:176-185.

Nogueira NW, Freitas RMO, Torres SB & Leal CCP (2014) Physiological maturation of cowpea seeds. Journal of Seed Science, 36:312-317.

Oliveira AG, Junior AF, Santos GR, Miller LO & Chagas LFB (2012) Potencial de solubilização de fosfato e produção de AIA por Trichoderma spp. Revista Verde, 7:149-155.

Oliveira LM, Schuch LOB, Bruno R & Peske ST (2015) Qualidade de sementes de feijão-caupi tratadas com produtos químicos e armazenadas em condições controladas e não controladas de temperatura e umidade. Semina: Ciências Agrárias, 36:1263-1275.

Prado JPD, Krzyzanowski FC, Martins CC & Vieira RD (2019) Physiological potential of soybean seeds and its relationship to electrical conductivity. Journal of Seed Science, 41:407-415.

Pereira FT, Oliveira JB, Muniz PHP, Peixoto GHS, Guimarães RR & Carvalho DDC (2019) Growth promotion and productivity of lettuce using Trichoderma spp. commercial strains. Horticultura Brasileira, 37:69-74.

R Development Core Team (2020) R: A Language and environment for statistical computing. Available at: https://www.R-project.org/. Accessed on: November 10th, 2020.

Saber WI, Ghoneem KM, Rashad YM & Al-askar AA (2017) Trichoderma harzianum WKY1: an indole acetic acid producer for growth improvement and anthracnose disease control in sorghum. Biocontrol science and technology, 27:654-676.

Seifert K, Morgan-Jones G, Gams W & Kendrick B (2011) The genera of Hyphomycetes. Utrecht, CBS-KNAW Fungal Biodiversity Centre. 866p.

Singh A, Shukla N, Kabadwal BC, Tewari AK & Kumar J (2018) Review on Plant-Trichoderma-Pathogen Interaction. International Journal of Current Microbiology and Applied Sciences, 7:2382-2397.

Stewart A & Hill R (2014) Applications of Trichoderma in plant growth promotion. In: Gupta VG, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I & Tuohy M (Eds.) Biotechnology and biology of Trichoderma. Netherlands, Elsevier Science. p.415-428.

Downloads

Published

2025-06-03

How to Cite

Ferreira de Lima Cruz, J. M., Ricardo de Farias, O., Bandeira Medeiros de Moura, I. N., Linné, J. A., Rodrigues da Silva, L. D., & Cordeiro do Nascimento, L. (2025). Microbiolization of cowpea seeds with commercial strains of Trichoderma asperellum and T. harzianum. Revista Ceres, 69(5), 613–618. Retrieved from https://ojs.ceres.ufv.br/ceres/article/view/8062

Issue

Section

VEGETATIVE AND SEMINIFEROUS PROPAGATION

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.